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Abstract:

This paper presents an adaptive protection approach for classifying and locating faults
in Thyristor Controlled Series-Compensated (TCSC) transmission lines. The proposed
scheme is based on Multilayer Feedforward Neural Networks (MFNNs). Levenberg-
Marquardt (LM) training algorithm is employed. The LM algorithm appears to be the
fastest training algorithm and highly nominated for better generalized models. Three-
phase power system currents and voltages at the relay location are used as inputs to
MFNN-based relay. Two neural networks are trained to address fault classification and
location. Feasibility and reliability of the proposed scheme are investigated using fault
data set of a typical 500 kV power system simulated in EMTP-ATP package. Studied
system is subjected to all possible shunt faults at different operating conditions,
including fault location, fault inception angle and fault resistance.  Simulation results
demonstrate that MFNN-based relay system is very robust, fault tolerant, and highly
accurate in protecting Flexible AC Transmission Systems (FACTS), such as
transmission lines with TCSC.
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1. Introduction:

    Flexible AC Transmission Systems (FACTS) devices are used for dynamic control of
voltage, impedance and phase angle of high voltage transmission lines with substantial
improvement in power transfer, and transient and steady state stability margins. One of
these devices is Thyristor-Controlled Series Capacitor (TCSC), which is capable of
electrically shortening long transmission lines hence reducing transmission losses, and
maximizing transferred power to the thermal limits of existing lines.
     However, introducing TCSC to transmission systems makes the design of protection
system a challenging task [1]-[3]. TCSC causes abrupt change in the impedance of the
transmission lines, and creates new switching transients due to resonance between series
capacitor and the power system inductance. In addition, the picture is getting worse if
the over-voltage protection of series capacitor operates due to high fault currents. All of
these effects contribute to the distortion of phase voltage and line current waveforms,
and hence, most likely false tripping/blocking in conventional schemes-based protective
relays.
    A Kalman Filter approach [4] has been proposed for classifying and locating faults
with respect to series capacitor. Nevertheless, the technique is sensitive to fault
resistance.
    Artificial Neural Networks (ANNs) offer an alternative solution for identifying and
locating faults in power systems, since ANNs are able to extract characteristic features
existing in input vectors. There have been previous attempts to use ANNs in protective
relaying algorithms. Neural network and deterministic based approaches have been
suggested for protecting series compensated transmission lines [5]-[6]. These techniques
are based on compensating the capacitor voltage, and have limited operational success
due to unpredictable performance of the Metal-Oxide Varistor (MOV) protecting series
capacitor. Also, some schemes based on the Thyristor’s firing angle have been reported
[7]-[9]. Firing angle based algorithms are vulnerable to data transfer through
communication channels in case of power lines with TCSC located at the midpoint of
the transmission line. Travelling waves and Multilayer Feedforward Neural Networks
(MFNN) have also been employed for detecting and classifying faults on power lines
compensated at the two ends [10]. Yet, most of the work done so far has been based on
utilizing the Thyristor’s firing angle as an input to the NN-based relay. These techniques
are susceptible to data transfer problems, and the firing angle information is hard to be
obtained for practical closed-loop controlled systems.
    The purpose of this paper is to report a reliable technique for fault classification and
location in transmission lines with TCSC, using Multilayer Feedforward Neural
Networks (MFNN). Proposed algorithm uses only power system voltage and current
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samples which are commonly available at the relay point. The improved LM optimizing
training algorithm is robust in achieving global minimization of the performance
function within a short numbers of training epochs.
    This paper is organized as follows: section 2 covers studied power system, discusses
the associated characteristic features for fault identification and location, and shows
preparing training data and utilizing MFNN for adaptive distance protection. In section
3, simulation results are presented and discussed for validation of the proposed models.
Conclusions are given in the last section.

2. Power System Study and Patterns Generation:

A. Power System Model

    A two machine three-phase 500 kV, 60 Hz transmission system, as shown in Fig. 1,
has been simulated for the study of fault classification and location problem. The power
system comprises two sources, 160 mile transmission line, and TCSC with its associated
protecting components located at the midpoint of the transmission line.  The
transmission line [11] has a positive-sequence impedance Z1=0.041+j0.528 Ohm/mile
and zero-sequence impedance Z0=0.449+j2.02 Ohm/mile.
    The TCSC is designed to work in capacitive vernier mode and to provide a variable
compensation from 30% to 75%. The effective reactance of the series capacitor is
governed by (1) [12]. Minimum compensation, 30%, is achieved at zero-conduction
angle, while maximum compensation is obtained at a conduction angle of 62°. In this
study, resonant factor, , is chosen as 2.5 for preventing resonance at characteristic
harmonics, and providing smoothing control over the desired conduction angle range.
Also, a Thyristor-Controlled Reactor (TCR) inductance, LS, is selected at a value of
10.7 mH for providing a wider control range of . The performance of TCSC as a
function of Thyristor conduction angle, , is depicted in Fig. 2. To avoid resonant
region and provide compensation over the designed range, simulation studies have been
performed for conduction angles in the range of 0° to 62°.

(1)

Where  is the Thyristor conduction angle, XC is the reactance of fixed capacitor, SC,
and  is the resonant factor and is defined as the ratio of resonant frequency to power
system frequency.
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Figure (1): one-line diagram of simulated power system model.

Figure (2): Impedance characteristics of the TCSC.

    The TCSC is protected against overvoltage by a Metal Oxide Varistor (MOV). The MOV is
represented by a single exponential model as:

                                                        (2)
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Where p and  are constants, and chosen as 1 and 30 respectively, Vpl is the protective level
voltage of the capacitor and is selected at 120kV, which is two times the capacitor rated voltage.
As long as the voltage across the capacitor is below the protective level, the MOV presents a
very high resistance. When the capacitor is in the fault loop and capacitor voltage exceeds the
protective level, the MOV resistance becomes low and it diverts part of the fault current away
from the capacitor. Hence, the series capacitor is partially inserted in fault loop during fault
period. If the fault is temporary, or the fault cause is cleared, the capacitor is automatically
reinserted thereby enhancing power system transient stability. However, because of the non-
linear characteristics of the MOV, the relationships between the voltage and current phasors are
distorted and the distance relay could over-reach the fault.
    Since the MOV is a non-linear resistive element and it has an energy dissipation limit, it is
protected by monitoring the dissipated energy. If the MOV energy exceeds a pre-specified
threshold value (5 MJ used in this study), a trigger signal is issued to an air gap to reroute the
fault current away from the MOV. Depending on the fault type and fault resistance, the
MOV/TCSC combination might be short-circuited within the first cycle, while fast protective
relays are expected to make their decision. Then, the apparent impedance seen by the distance
relay is distorted again and consequently the relay decision is unreliable. A bypass circuit
breaker is usually incorporated to close the air gap when its energy limit is reached, and also for
maintenance purposes. A small inductance, Ld, is used to limit the fault current through the air
gap or the bypass circuit breaker.
    From a practical prospective, transducers (current and capacitor voltage transformers or CT’s
and CVT’s) represent a major element of any protective relaying scheme. They step down the
high magnitude line currents and voltages of the power system to manageable level for driving
protective relays. However, they could be source of error due to core saturation in CT’s and
transient response of CVT’s. In addition to the CT saturation effect, in steady state, there is a CT
ratio error because of the magnetizing current needed to establish the core flux. Thus, these
aspects should be taken into consideration in fault studies. A typical current transformer of ratio
1200/5 with an accuracy of C100 has been modeled according to IEEE Std. [13].  Also, one of
the capacitor voltage transformers reported in [14] is customized to match 500 kV studied power
system.
    The numerical simulations were performed using a well proven industrial program,
Electromagnetic Transients Program (EMTP)-ATP software package [15]. The transmission line
is represented by distributed parameters model. Since the TCSC distorts voltage waveforms, and
line currents are free from harmonics because power lines are highly inductive, the line currents
were used as synchronizing signals for generating stable firing pulses [12]. The firing circuits
and MOV/protection circuitry have been simulated by Transient Analysis of Control Systems
(TACS) components.  Several fault scenarios including different fault inception times, fault
types, fault locations have been simulated at a sampling frequency of 12 kHz. The power system
voltage and current signals at the relay location are re-sampled at 960 Hz and retrieved for



Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE099 - 6

training/testing the proposed schemes.

B. Feature Extraction and patterns generation

    Protective relay response is mainly based on defining the power system state through
identifiable patterns of associated voltage and/or current waveforms. Therefore, the
development of an adaptive protective technique can be treated as a problem of pattern
recognition/classification. Neural networks are capable of classifying different patterns into
favorite output classes through learning from examples. In the essence of pattern classification
technique, it is important to select features that contain sufficient information needed to
distinguish between classes, and permit efficient computation to limit the quantity of training
data and the size of the network [7].
    In practice, voltage and current waveforms measured by CVT’s or VT’s and CT’s are readily
available data at relay location. Moreover, they contain the entire information for monitoring
abnormal conditions in power systems. Thus, scaled sampled voltage and current signals are
usually used as inputs to digital protective relays. However, The post-fault current and voltage
waveforms are accompanied with dc and high frequency harmonic components whose
magnitudes depend on several random factors in nature. These harmonics need to be filtered out
without jeopardizing the intrinsic information that might help in distinguishing different fault
classes.
    Through extensive fault studies of the selected power system shown in fig. 1, it is observed
that post-fault current and voltage waveforms for faults before the TCSC are rather different in
harmonic contents than those for fault loops involving the TCSC [4]. When a fault is initiated
before the series capacitor, the dominant frequency components include: exponentially decaying
DC component, high frequency components due to resonance between shunt capacitance and
line inductance, and fundamental frequency component. On the other hand, the dominant
frequencies for faults after the series capacitor include all previous harmonic components as
well as additional non-fundamental harmonics due to resonance between power system
inductance and series capacitor, and odd harmonics as a result of MOV conduction.
    The protection system, as illustrated in fig. 3, is composed of classification and fault locating
modules. Local samples of the three phase voltage and current waveforms were acquired from
EMTP/ATP software at 12 kHz. All possible ten (10) shunt faults at different operating
conditions and variations in fault location, fault inception time, power flow direction, and fault
resistance were simulated. High fault resistance up to 100  was considered. Twenty (20)
samples of each waveform after fault inception were retrieved for training/testing purpose.
These samples were preprocessed by 2nd order low-pass anti-aliasing filter and re-sampled at
960 Hz (16 samples per cycle), which is commonly used in numerical relays.
    Voltage and current samples were linearly normalized to have a maximum value of +1 and a
minimum value of -1. This was done by using a scaling factor of the peak value of the nominal
voltage and twelve (12) times the rated current. Different scaling factors were used to maintain
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the same weighting for both voltage and current signals. In addition, scaling can speed up the
training process and enhance the NN performance. Processed voltage and current samples were
then used for generating labeled patterns.

ATP
Simulated
Voltage &
Current
Samples

Low-pass
anti-aliasing

filter

Sampling at
960 Hz

ANNFC

ANNFL

a
b
c
g

Fault
Location

Figure (3): Modular proposed protective scheme; ANNFC is the fault classification module,
ANNFL is the fault location module.

3. Protective scheme using Multilayer Feedforward Neural Networks (MFNN):

A. Multilayer Feedforward Neural Networks (MFNN)

    An intelligent machine learning technique, artificial neural network, provides an alternative
concept to mathematical algorithms based on a series of programmed instructions. Since neural
computing is expanding in the engineering field, different NN paradigms have been developed,
e.g. a Multilayer Feedforward NN, Self-Organizing Mapping (SOM) NN, Radial Basis
Function NN (RBFNN), and a Recurrent NN. The first type shows extraordinary advantages in
learning underlying relationships from examples representing the problem at hand, capability of
generalization even in noisy environment, and the ability to map nonlinear relationships
existing in input vectors owing to its inherent nonlinearity [16]-[17]. In addition, the MFNN is
widely applicable in different engineering disciplines.
    The MFNN is a composite of elementary processing elements (neurons) arranged in multiple
layers, i.e. input layer, hidden layers, and output layer. The neural networks are usually
characterized by the activation functions of their neurons, neuron interconnection relationships,
and the training algorithm.
    Several techniques have been developed to speed up the convergence of Back-Propagation
(BP) algorithm, which is commonly used for updating weights and biases of MFNN. One of
these techniques is the Levenberg-Marquardt (LM) optimizing training algorithm [18]. The LM
is based on updating the weights as,
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                                                              (3)

Where J is the Jacobian matrix that contains first derivatives of the network errors with respect
to the weights and biases, and e is a vector of network errors. The scalar  is decreased after
each successful step and is increased when a tentative step tends to increase the performance
function. Thus  is utilized to assure that the performance function (mean-squared error
between targets and actual outputs) is always reduced at each epoch of the algorithm. This
algorithm is selectable within the neural networks toolbox of MATLAB software [19].
    For better performance and fast convergence, weights and biases of the network were
initially assigned random values within the range [-1, 1] and the learning factor, , was given a
value of 0.05. Then, the training input vectors were presented to the network in “batch” mode
and the network’s weights updated according to (3). The training process stopped when the
validation error started to increase after reaching a minimum value. This stop validation
criterion is used to prevent the network from memorizing and thereby enhancing the
generalization capability.

B. Proposed MFNN Based fault classification

    Data window is a key factor in designing NN structure and has great effect on its
performance. Long data window enables protective algorithms to get more information resulting
in stable performance, but slow decision can be achieved. After studying the simulation results
and maintaining compromising performance, a data window of a quarter of cycle at 960 Hz
sampling frequency was found to be sufficient for classifying all shunt fault types. A total of
7,650 labeled patterns were generated; each pattern consisting of twenty four (24) inputs – four
samples for each of the three phase voltages and currents, and four (4) outputs representing
three-phase and ground states. Each target output is assigned a value of +1 if the phase or
ground is included in the fault and -1 otherwise. For example, if the output set {abcg} is equal to
{1 -1 1 1}, it means that a 2-  to ground fault (a-c-g) is declared.
    The total patterns were divided into three sets such that 60% were used for training, and 20%
were used to validate and prevent the network from over-fitting the problem. The last 20% were
used as an independent set to test the network generalization. Each set was shuffled in such a
way that the network output alters between +1 and -1, and in turn precluding the network from
learning specific sequence.
    As the issue of selecting optimal number of hidden neurons is still evolving, an extensive
series of studies on several network topologies has been conducted. Networks having 10, 12, 14,
16, and 18 neurons in the hidden layer were studied. Each network was trained as explained in
section A. The network with 12 neurons in the hidden layer seemed to have the best
performance. Different activation functions were evaluated. The Tan-sigmoid activation
function for both hidden and output neurons was found to be the best suited for this application.
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Mean-square error between the actual and desired output reached a minimum value of 0.01.
    To evaluate the speed, generalization, and fault tolerant of the fault classification network
(ANNFC), several shunt faults were simulated and presented to the trained network. The ANNFC
was capable of detecting and classifying faults within an average time of 3 ms. Fig. 4 shows the
three-phase voltages and currents and the network output for a 2-  fault, a-b, which occurred on
the studied power system and located at 90 mile away from the relay point.

C. Proposed MFNN Based fault location

    After studying the simulation results, it was concluded that fault location can be estimated
using the readily available information at the relay point, which are voltage and current
waveforms. Since data window length is a key factor in determining the network topology and
performance, several data windows were tested and a half-cycle data window was found
sufficient for locating shunt faults with respect to series capacitor. Training data included total
of 6,552 patterns. Each pattern consisted of a vector of forty eight (48) elements, eight samples
for the three phase voltages and currents, and one desired output indicating the fault location.
The entire data was divided into three sets. Sixty percent of the data was assigned for training,
while the rest forty percent was equally divided for validation and testing. Also, each of the sets
was shuffled such that target output alters between +1 and -1.
    As output of the NN indicates whether the series capacitor is included in the fault loop or not,
one output neuron was used.  A fault loop including series capacitor was indicated by an output
of +1, while that excluding the series capacitor was indicated by -1. Number of input neurons
was limited to the number of elements in input vector, but number of neurons in the hidden layer
was determined by experimentation. Different network configurations were trained and tested.
The LM training algorithm was used to reach the optimal weights and biases. The network
finally selected for fault location problem had 48 neurons in the input layer, 10 neurons in the
hidden layer and 1 neuron in the output layer. Tan-sigmoid activation function was used for
hidden and output neurons because it showed better convergence for performance index
function.  Generalization capability of the selected network was assessed by presenting all
patterns to each network and performing linear regression between network’s outputs and
corresponding targets. A mean-square error of 0.04 and R-value of 0.956 were reached. Thus,
the selected network is most likely to accurately locate shunt faults.
    A set of tests covering typical fault scenarios which were totally different from those used in
training phase was simulated. The ANNFL has been capable of locating faults with acceptable
accuracy. The network’s output for different fault types on transmission line at 20 miles from
the relay point is shown in fig. 5. The network identifies accurately that the series capacitor is
not included in the fault loop. Also, as depicted in fig.6, the network output is stable at +1 when
the fault occurred at 100 miles from the relay location which included the series capacitor in the
fault loop.
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Figure 4: Fault classification network output for a-b fault at 90 miles, fault resistance 50 ,
conduction angle 50°, = -10°, fault inception angle is 90°.
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Figure 5: Fault location network output for faults at 20 miles, fault resistance 20 , conduction
angle 62°, =-20°, fault inception angle is 90°.
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Figure 6: Fault location network output for faults at 100 miles, fault resistance 50 ,
conduction angle 45°, = -10°, fault inception angle is 0°.

4. Conclusion:

    This paper reports on the development of an ANN-based fault classification and
location relay protection system for Thyristor-Controlled Series Capacitor (TCSC)
transmission lines. Fault classification and location schemes use local end samples of
power system voltages and currents to make a decision. Fault location scheme is
designed to locate faults with respect to series capacitor, and is independent of the
Thyristor’s firing angle, . This flexibility feature confirms that proposed algorithms
could be realized for protecting series compensated transmission networks. For fault
location, half-data window was found the best to reach a reliable decision. Proposed
approaches were extensively tested for data set unseen in training phase. Simulation
results show that proposed schemes are highly accurate and robust in classifying and
locating all possible faults irrespective of fault resistance, MOV operation, pre-fault
loading, and compensation degree.
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