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Abstract:

The main objective of this work is the development of an intelligent multisensor
integration and fusion model that uses fuzzy similarity-based data fusion of several
Kalman filters outputs. First, the estimation of sensors outputs are calculated using a set
of Kalman filters with pre-estimated measurement noise. Using fuzzy set theory, the
fuzzy similarity between the predicted data is extracted to determine the importance
weight of each sensor. Weights assigned to different sensors measurement data to reflect
the confidence in the sensor's behavior and performance and to realize the multi-sensor
data fusion. According to the algorithm theory, its application software is developed
using MATLAB. This work has wide applications especially in the development of
radar target tracking, smart structural health monitoring systems, biomedical imaging,
and robotics control. The applied example proves that the algorithm can give priority to
the high-reliability and stability sensors. Moreover, it reflects the efficiency and
feasibility to real-time data processing and monitoring.
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1. Introduction:

In recent years, multisensor data fusion has received a special attention for a wide of
applications which require accurate measurements of measured parameters [1-4].
Accuracy in measuring the state of a dynamic stochastic system is difficult using a
single sensor. In many cases process and measurements noise cannot be ignored.
Therefore, a reliable procedure is needed to estimate the measured signal correctly. A
Kalman filter is used extensively for signal estimation. The Kalman filter is an optimal
linear estimator that provides the estimation of the signal in noise [4] and is known as a
powerful algorithm for estimation. It has the features of unbiased with linear estimate
and produces estimate with minimum error covariance. However, the Kalman filter is
based on known characteristics of the system. These characteristics are difficult to
determine in many real life applications [5].

Extending the Kalman filter using suitably defined estimation algorithms has shown
improved results [6]. One way to improve accuracy is by combining multiple sensors
measuring the same parameter into one logical component With this approach, the effect
of problems associated with sensors may be minimized. Multi-Sensor data fusion is
advantageous because the strengths of one sensor often compensate for the weaknesses
of the other. Earlier work [7] developed certain rules by which data from sensors were
taken. Data fusion of different sensors based on Kalman filter has been reported by
many authors to control movement of wheeled mobile robot [8]. After successful
estimation, or prediction, the data of the sensors are fused together to form one logical
sensor [9,10]. Different methods for connecting the Kalman filter to sensors were used
[11].

This paper presents architecture for fusing data obtained from several sensors. The
presented architecture is based on adaptive Kalman filter connected to each sensor.
Output of these filters was fused together to perform predicted output. The general idea
explored in this approach is the combination of the advantages that both Kalman
filtering and fuzzy logic similarity techniques [12]. On the one hand, Kalman filtering is
acknowledged as one of the most powerful traditional techniques of estimation. On the
other hand, the main advantages derived from the use of fuzzy logic similarity
techniques, with respect to traditional schemes, are the simplicity of the approach, the
capability of fuzzy systems to deal with imprecise information, and the possibility of
including heuristic knowledge about the phenomenon under consideration required. In
addition to the capability of combining information from different sensors, the proposed
architecture overcomes on the degradation of the overall performance if some sensors
units fail or interconnections are broken.
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2. Kalman Filter

2.1 Basics principle of Kalman Filter

The Kalman filter provides an efficient computational( recursive) means to estimate the state
of a process, in a way that minimizes the mean of the squared error. The filter is very powerful
in several facets: it supports estimations of past, present, and even future states, and it can
be done so even when the accurate nature of the modeled system is unknown.

The Kalman filter addresses the general problem of trying to estimate the state of a nx ℜ∈
discrete-time controlled process that is governed by the linear stochastic difference equation

111 −−− ++= kkkk wBuAxx ,                                                                                                 (1)
with a measurement nz ℜ∈ that is

11 −− += kkk Hxz ν                                                                                                                (2)
The random variables ω  and ν  represent the process and measurement noise
(respectively). They are assumed to be independent (of each other), white, and with normal
probability distributions

),0(~)( QNP ω                                                                                                                (3)
),0(~)( RNP ν                                                                                                                 (4)

The matrix nxn   in the difference equation (1) relates the state at the previous time step k-1
to the state at the current step k, in the absence of either a driving function or process noise.
Note that in practice might change with each time step, but here we assume it is constant.
The nxl matrix B  relates the optional control input lu ℜ∈  to the state x. The mxn  matrix H in
the measurement equation (2) relates the state to the measurement zk. In practice H might
change with each time step or measurement, but here we assume it is constant.

We define n
kx ℜ∈−) to be our a priori state estimate at step k given knowledge of the

process prior to step k and n
kx ℜ∈) to be our a posteriori state estimate e at step k given

measurement kz . We can then define a priori and a posteriori estimate errors as
−− −≡ kkk xxe  and kkk xxe −≡

The a priori estimate error covariance is then

[ ]T

kkk eeEP −−− −=                                                                                                              (5)

and the a posteriori estimate error covariance is

[ ]T

kkk eeEP −=                                                                                                               (6)
The Probabilistic origins of the Kalman filter found below.
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)( −− −+= kkkk xHzKxx                                                                                                    (7)

The difference )( −− kk xHz in (7) is called the measurement innovation, or the residual.
The residual reflects the discrepancy between the predicted measurement −

kxH and the
actual measurement kz  A residual of zero means that the two are in complete agreement.

The difference )( −− kk xHz in (7) is called the measurement innovation, or the residual.
The residual reflects the difference between the predicted measurement −

kxH , and the
actual measurement zk. A residual of zero means that the two are in complete agreement
The nxm  matrix K in (7) is chosen to be the gain or blending factor that minimizes the a
posteriori error covariance (6). This minimization can be accomplished by first
substituting (7) into the above definition for ek, substituting that into (6). Performing the
indicated expectations, taking the derivative of the trace of the result with respect to K.
setting that result equal to zero, and then solving for K. For more details see [5]. One
form of the resulting A' that minimizes (6) is given by

1)( −−− += RHHPHPK T
k

T
kk                                                                                             (8)

2.2 The Discrete Kalman Filter Algorithm

The Kalman filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of (noisy)
measurements. As such, the equations for the Kalman filter fall into two sets: time
update equations and measurement update equations. The time update equations are
responsible for projecting forward the current state and error covariance estimates to
obtain the a priori estimates for the next time step. The measurement update equations
are responsible for the feedback i.e. for incorporating a new measurement into the a
priori estimate to obtain an improved a posteriori estimate. The time update equations
can also be thought of as predictor equations, while the measurement update equations
can be thought of as corrector equations. The final estimation algorithm look likes that
of a predictor-corrector algorithm for solving numerical problems [5] as shown below in
Fig. (1).
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Fig. (1) A complete picture of the operation of the Kalman filter.

2.3 Filter Parameters and Tuning

In the actual implementation of the filter, the measurement noise covariance R is usually
measured prior to operation of the filter. Measuring the measurement error covariance R
is generally practical possible because we need to be able to measure the process anyway
while operating the filter so we should generally be able to take some off-line sample
measurements in order to determine the variance of the measurement noise.
The determination of the process noise covariance Q is generally more difficult as we
typically do not have the ability to directly observe the process we are estimating.
Sometimes a relatively simple process model can produce acceptable results if one
considers uncertainty into the process by the selection of Q. The tuning is usually
performed off-line, frequently with the help of another Kalman filter in a process
generally referred to as system identification.

3 Fuzzy Similarity-based Data Fusion Algorithm

We assume that there is a multi-sensor system with n sensors used to carry through
measurement. A sample data zi from each i sensor is captured to pre-estimate offline the
covariance matrix Ri of measurement noise vi and i=1,2,….,n. An m Predicted values xij
of sensor i is extracted simultaneously   using m Kalman filters with different covariance
matrix Ri Rij (j=1,2, …m) and thereby gets an m estimated measurement values:
xi1,xi2,...,xim. (i=l,2,3,---,n). Then the   fuzzy   similarity-based   multi-sensor   data
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fusion algorithm is used in four stages.

First stage, data from multiple sensors is extracted. The value xi mean measurement i,
standard deviation j, of the i’s sensor. The multiple sensors objective prediction value
x0 and standard deviation 0 are calculated.
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Second stage, Grubbs judgment algorithm is used to eliminate those unrealistic data. We
arrange x1 x2,  x3, ..., xn from minimum to maximum and give the significance level 

[13-14]. Assuming that Grubbs statistic
0

0

σ
xxh i

i

−
= . If this Grubbs statistic hi is an

outlier, then the wrongly measured xi is eliminated.

Third stage, according to fuzzy set theory, a certain sensor's measurement values and the
multiple sensors' prediction values are respectively expressed as fuzzy sets Fi and  F0.
The fuzzy similarity between them is used to determine the importance weigh of a
certain sensor. Let normal fuzzy sets Fi and  F0 denote respectively as the fuzzy sets of
the i’s sensor measurement values xi and the multiple sensors objective prediction values
x0.

]exp[)(
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We can know that the similarity between fuzzy sets Fi and F0

])(exp[),( 2
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),( 0FFiη is higher, Fi is closer to F0, ),( 0FFiη  can be viewed as the importance weigh
of the i sensor during the data fusion.
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Last stage, we calculate each sensor's relative importance weigh
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ω  , ( i = 1,2,…,n)                                                                                  (14)

The final data fusion is calculated as:

i

n

i
i xwz ∑

=

=
1

                                                                                                                     (15)

Fig. (2) shows the sequence steps of proposed multi sensor data fusion architecture.

Fig. (2)   Proposed multisensor data fusion architecture
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4  Illustrative Example

To demonstrate the effectiveness and accuracy of this proposed method of multisensor
Data Fusion architecture, an example with three noisy sensors is outlined. Consider the
following linear system,

kkkk wuxx +














−
+















 −
=+

5919.0
5919.0
3832.0

00.10.0
0.00.00.1

1129.04940.01269.1

1                                       (16a)

[ ] kkk xz υ+= 001                                                                                                (16b)

With initial conditions 00 =x , in the equation (16) the system noise sequence kw is a
zero-mean Gaussian white noise sequence with covariance 1=Q . The measurement
noise sequence kv is generated as zero-mean Gaussian white noise sequence with
covariance iR  starting value pre-estimated from a measurement sample data for each
senor i. The change vector of  covariance iR  is taken as

[ ]2.02.01.01.00 −−=∆R .

A Matlab code was developed to simulate the process described by equation (16). The
actual value of R for each sensor is assumed unknown starting value which is estimated
from a sampled measurement data offline as shown in Fig. (3).

R = 0.7619 R =0.9846
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Figure (3): Sampled data noise for covariance estimation of each sensor
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output error

(a)
(b)

(c) (d)

(e)
Fig. (4): Kalman filter response of sensor1 with different covariance matrix

and measurement error
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output error

(a) (b)

(c) (d)

(e)
Fig. (5):Kalman filter response of sensor2 with different covariance matrix

and measurement error
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Fig. (6):Kalman filter response of sensor3 with different covariance matrix

and measurement error
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Figure (7): Fused response and Kalman filter response of failed sensor3

Table (1): Statistical Error Analysis

sensor Mean Standard Deviation
Sensor1 0.0550 0.5106
Sensor2 0.0596 0.5310
Sensor3  0.0014 0.0079
Fused 0.0660 0.5088

Kalman filter response of sensor, sensor2, and sensors 3 using different measurement
noise covariance Ri changed around the estimated values from calculated one  off-line
(see Fig. (3)) by factor [0 -0.1 0.1 -0.2 0.2] and the measurement error compared with
the true one are shown in Fig. (4), Fig. (5), and Fig. (6) respectively. As it is clear from
Fig. (6) we assume failure  of data measurement of sensor 3.  In spite of this failure, the
system able to compensate it and fused only the realistic data as shown in Fig. (7).
Statistical parameters of error measurements for each sensor compared with the fused
one are given in table 1.

5. Conclusions

A multisensor data fusion architecture using  a group of a set of Kalman filters and
fuzzy similarity based techniques has been presented. This approach exploits the
advantages that both approaches have: the optimality of the Kalman filter and the
capability of fuzzy similarity systems to deal with imprecise information.  In this
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approach the linear estimations of the individual Kalman filters are improved through a
set of the measurement noise covariance matrix R for each sensor. A priori prediction of
the value of R is done offline using a data sample for each sensor. The fusion of the
information is carried out based on the degrees of confidence generated by calculation
similarity degree of each sensor data relative to the other sensors.  This architecture
produced more accurate results than using any one of the individual sensors. In
comparison with other methods, the fuzzy similarity-based multi-sensor data fusion of
several Kalman filters is able to measure with higher precision in less time and
eliminating the uncertainty of measured data. This work can find a wide area of
applications specially in the development of radar target tracking, smart structural
health monitoring systems, biomedical imaging, and robotics control.
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