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Abstract:

Statistical Learning is the process of estimating an unknown probabilistic input-
output relationship of a system using a limited number of observations; and a statistical
learning machine (SLM) is the machine that learned such a process. While their roots
grow deeply in Probability Theory, SLMs are ubiquitous in the modern world.
Automatic Target Recognition (ATR) in military applications, Computer Aided
Diagnosis (CAD) in medical imaging, DNA microarrays in Genomics, Optical
Character Recognition (OCR), Speech Recognition (SR), spam email filtering, stock
market prediction, etc., are few examples and applications for SLM; diverse fields but
one theory.

The field of Statistical Learning can be decomposed to two basic subfields, Design
and Assessment. We mean by Design, choosing the appropriate method that learns from
the data to construct an SLM that achieves a good performance. We mean by
Assessment, attributing some performance measures to the designed SLM to assess this
SLM objectively. To achieve these two objectives the field encompasses different other
fields: Probability, Statistics and Matrix Theory; Optimization, Algorithms, and
programming, among others.

Three main groups of specializations—namely statisticians, engineers, and computer
scientists (ordered ascendingly by programming capabilities and descendingly by
mathematical rigor)—exist on the venue of this field and each takes its elephant bite.
Exaggerated rigorous analysis of statisticians sometimes deprives them from
considering new ML techniques and methods that, yet, have no “complete”
mathematical theory. On the other hand, immoderate add-hoc simulations of computer
scientists sometimes derive them towards unjustified and immature results. A prudent
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approach is needed that has the enough flexibility to utilize simulations and trials and
errors without sacrificing any rigor. If this prudent attitude is necessary for this field it is
necessary, as well, in other fields of Engineering.

In the spirit of this prelude, this article is intended to be a pilot-view of the field that
sheds the light on SLM applications, the Design and Assessment stages, necessary
mathematical and analytical tools, and some state-of-the-art references and research.
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Statistical Learning, Machine Learning, Pattern Recognition, Pattern Classification,
Automatic Target Recognition, Computer Aided Diagnosis, Classifier Assessment,
Receiver Operating Characteristics
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1. Introduction and Terminology

In the present section some basic concepts and terminology necessary for the sequel will
be formally introduced. The world of variables can be categorized into two categories:
deterministic variables and random variables. A deterministic variable takes a definite
value; the same value will be the outcome if the experiment that yielded this value is
rerun. On contrary, a random variable is a variable that takes a non-definite value with a
probability value.

Definition 1:
A random variable X  is a function from a sample space S  into the real numbers R ,
that associates a real number, ( )x X s= , with each possible outcome s S .

Details on the topic can be found in [1, Ch. 1]. For more rigorous treatment of random
variables based on measure theoretic approach see [2]. Variables can be categorized as
well, based on value, into: quantitative or metric, qualitative or categorical, and ordered
categorical A quantitative variable takes a value on R  and it can be discrete or
continuous. A qualitative or categorical variable does not necessarily take a numerical
value; rather it takes a value from a finite set. E.g., the set { }G Red Green Blue= , ,  is a set
of possible qualitative values that can be assigned to a color. An ordered categorical
variable is a categorical variable with relative algebraic relations among the values. E.g.,
the set { }G Small Medium Large= , ,  includes ordered categorical values.

Variables in a particular process are related to each other in a certain manner. When
variables are random the process is said to be stochastic, i.e., when the inputs of this
process have some specified values there is no deterministic value for the output, rather
a probabilistic one. The output in this case is a random variable.

We next consider the general problem of statistical learning algorithms. Consider a
sample consisting of a number of cases—the words cases and observations may be used
exchangeably—, where each case is composed of the set of inputs that will be given to
the algorithm together with the corresponding output. Such a sample provides the means
for the algorithm to learn during its so-called “design” stage. The goal of this learning or
design stage is to understand as much as possible how the output is related to the inputs
in these observations, so that when a new set of inputs is given in the future the
algorithm will have some means of predicting the corresponding output. The above
terminology has been borrowed from the field of machine learning. This problem is
originally from the field of statistical decision theory, where the terminology is
somewhat different. In the latter field, the inputs are called the predictors and the output
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is called the response. When the output is quantitative the learning algorithm is called
regression; when the output is categorical or ordered categorical the learning algorithm
is called classification. In the engineering communities that work on the pattern
classification problem, the terms input features and output class are used respectively.
The learning process in that setting is called training and the algorithm is called the
classifier.

Definition 2:
Learning is the process of estimating an unknown input-output dependency or structure
of a system using a limited number of observations.

Statistical learning is crucial to many applications. One of the first applications that
utilized learning was Automatic Target Recognition (ATR) in military applications. In
the medical imaging field, a tumor on a mammogram must be classified as malignant or
benign. This is an example of prediction, regardless of whether it is done by a
radiologist or by a computer algorithm (Computer Aided Diagnosis or CAD). In either
case the prediction is done based on learning from previous mammograms. The
features, i.e., predictors, in this case may be the size of the tumor, its density, various
shape parameters, etc. The output, i.e., response, is a categorical one which belongs to
the set { }G benign malignant= , . There are so many such examples in biology and
medicine that it is almost a field unto itself, i.e., biostatistics. The task may be
diagnostic as in the mammographic example, or prognostic where, for example, one
estimates the probability of occurrence of a second heart attack for a particular patient
who has had a previous one. All of these examples involve a prediction step based on
previous learning. A wide range of commercial and military applications arises in the
field of satellite imaging. Predictors in this case can be measures from the image
spectrum, while the response can be the type of land or crop or vegetation of which the
image was taken.

The biomedical landmark of our time has been the sequencing of the genomes of
many organisms, in particular, the sequencing of the human genome. The availability of
this version of life’s instruction book is leading to a very great horizon of research
possibilities, including many approaches to personalized medicine. In Genome project
the interest is making a prediction of the number of genes in the human genome. One of
the key tools for this task is a family of learning machines referred to as “Hidden
Markov Models” (HMMs). On the other hand, in Genomics, the task is to predict the
level of expression of a particular gene responsible for a particular disease. The set of
predictors in this case are multiple-gene-expression microarrays (“DNA chips”).

Before going through some mathematical details, it is convenient to introduce some
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commonly used notation. A random variable—or a random vector—is referred to by an
upper-case letter, e.g., X . An instance, or observation, of that variable is referred to by a
lower-case letter, e.g., x . A collection of N  observations for the p -dimensional random
vector X  is collected into an N P´  matrix and represented by a bold upper-case X .  A
lower-case bold letter x  is reserved for describing a vector of any N -observations of a
variable, even a tuple consisting of non-homogeneous types. The main notation in the
sequel will be as follows: ( ){ }i i it x y: = ,t  represents an n -case training data set, i.e.,
one on which the learning mechanism will execute. Every sample case it  of this set
represents a tuple of the predictors ix  represented in a p -dimensional vector, and the
corresponding response variable iy . All the N  observations ix ’s may be written in a
single N P´  matrix X , while all the observations iy  may be written in a vector y .

1. Statistical Decision Theory

This section provides an introduction to statistical decision theory, which serves as the
foundation of statistical learning. If a random vector X  and a random variableY  have a
joint probability density ( )X Yf x y, , , the problem is defined as follows: how to predict the
variable Y  from an observed value for the variable X . In this section we assume having
a full knowledge of the joint density X Yf , , so there is no learning yet (Definition 1). The
prediction function ( )Xh  is required to have minimum average prediction error. The
prediction error should be defined in terms of some loss function ( ( ))L Y Xh,  that
penalizes for any deviation in the predicted value of the response from the correct value.
Define the predicted value by:

( )Y Xh= (1)
The risk of this prediction function is defined by the average loss, according to the
defined loss function, for the case of prediction:

( ) ( )R E L Y Yh é ù= ,ë û (2)
For instance, some constraint will be imposed on the response Y  by assuming it, e.g., to
be a quantitative variable. This is the starting point of the statistical branch of
regression, where (1) is the regression function. A form should be assumed for the loss
function. A mathematically convenient and widely used form is the squared-error loss
function:

( )( ) ( )( )2L Y X Y Xh h, = - (3)
In this case (2) becomes:

( )2( ) ( ) ( )X YR Y X dF X Yh h ,= - , (4)

( )2( )X Y XE E Y X Xh|é é ùù= - |ë ë ûû (5)
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Hence, (5) is minimized by minimizing the inner expectation over every possible value
for the variable X . Ordinary vector calculus solves the minimization for ( )Xh  and
gives:

( )( )2
( )

( ) arg min ( )Y XX
X E Y X X

h
h h| é ù= - |ë û (6)

[ ]YE Y X= | (7)

(A more common proof that does not require regularity conditions, which assume
differentiability under the integration sign, can be found in [3]). This means that if the
joint distribution for the response and predictor is known, the best regression function in
the sense of minimizing the risk is the expectation of the response conditional on the
predictor. In that case the risk of regression in (5) will be:

[ ][ ]min ( ) XR E Var Y Xh = |

Recalling (2), and lifting the constraint on the response being quantitative, and setting
another constraint by assuming it to be a qualitative (or categorical) variable gives rise
to the classification problem. Now the loss function cannot be the squared-error loss
function defined in (3), since this has no meaning for categorical variables. Since Y
may take now a qualitative value from a set of size k , (see Section 0), the loss function
can be defined by the matrix

( ) ( )( )( ) 1ijL Y X c i j kh, = , < , < (8)

where the non-negative element ijc  is the cost, the penalty or the price, paid for
classifying an observation as jy  when it belongs to iy . In the field of medical decision
making this is often called the utility matrix. Under this assumption, the risk defined by
(2) can be rewritten for the categorical variables to be:

( )( )[ ]( ) X Y XR E E L Y Xh h|= , (9)

[ ]
1

P r ,
k

X ij i
i

E c Y y X
=

é ù
ê= = |êë û

(10)

where [ ]Pr Y X|  is the probability mass function for Y  conditional on X . Then the
conditional risk for decision jy

[ ]
1

( ) P r
k

ij i
i

R j c Y y Xh
=

, = = | (11)

is the expected loss when classifying an observation as belonging to jy  and the
expectation is taken over all the possible values of the response. Again, (10) can be
minimized by minimizing the inner expectation to give:
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[ ]
1

( ) arg min P r
k

ij ij i
X c Y y Xh

=

é ù
ê= = |êë û

(12)

Expressing the conditional probability of the response in terms of Bayes law and
substituting in (12) gives:

( )
1

( ) arg min Pr ,
k

ij X i ij i
X c f X Y y yh é ùë û

=
= | = (13)

Where Pr iyé ùë û is the prior probability for jy  while [ ]Pr jy X|  is the posterior probability;
i.e., the probability that the observed case belongs to jy , given the value of X . This is
what statisticians call Bayes classification, or Bayes decision rule or alternatively, what
engineers call the Bayes classifier.

Some special cases here may be of interest. The first case is when equal costs are
assigned to all misclassifications and there is no cost for correct classification; this is
called the 0-1 cost function. This reduces (12) to:

[ ][ ]( ) arg min 1 Pr jj
X Y y Xh = - = | (14)

[ ][ ]arg max P r jj
Y y X= = | (15)

The rule thus is to classify the sample case to the class having maximum posterior
probability. Another special case of great interest is binary classification, i.e., the case of

2k = . In this case (12) reduces to:
[ ]
[ ]

( )
( )

1 22 21
2 1

2 11 12

Pr
P r

y X c cy y
y X c c

| -
| -

(16)

Alternatively, this can be expressed as :
( )
( )

1 2 22 21
2 1

2 1 11 12

( ) P r
( ) P r

X

X

f X x y y c cy y
f X x y y c c

é ùë û
é ùë û

= | -
= | -

(17)

The decision taken in (12) has the minimum risk, which can be calculated by
substituting back in (10) to give:

min ( )
1

( ) P r ( )
k

i j X i X i
Xi

R c y dF X yh é ù, ë û
=

= | (18)

where ( )j X  is the class decision ( )Xh . For binary classification and where there is no
cost for a correct decision, i.e., 11 22 0c c= = , this reduces to:

2 1

min 12 1 1 21 2 2( ) P r ( ) P r ( )X X
R R

R c y dF X y c y dF X yh é ù é ùë û ë û= | + | (19)

where each of 1R  and 2R  is the predictor hyperspace over which the optimum decision
(16) predicts as class 1 or class 2 respectively. Latter, the response variable Y may be
referred to W in case of classification. To follow the notation of Section 0 the response
of an observation is assigned a value 1i i … kw , = , ,  to express a certain class.
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To recap, this section emphasizes the fact that there is no distinction between regression
and classification from the conceptual point of view. Each minimizes the risk of
predicting the response variable for an observation, i.e., a sample case with known
predictor(s). If the joint probability distribution function for the response and predictors
is known, it is just a matter of direct substitution in the above results. If the joint
distribution is known but its parameters are not known, a learning process is used to
estimate those parameters from a training sample t  by methods of statistical inference;
see [4], and [1]. However, if the joint distribution is unknown, this gives rise to two
different branches of prediction. These two branches are parametric regression (or
classification), introduced in Section 1—where the regression or classification function
is modeled and a training sample is used to build that model—and nonparametric
regression (or classification), introduced in Section 2—where no particular parametric
model is assumed.

1. Parametric Regression and Classification

The prediction method introduced in Section 1 assumes, as indicated, that the joint
density of the response and the predictor is known. If such knowledge exists, all the
methods revolve around modeling the regression function (1) in the case of regression
or the posterior probabilities in (12) in the case of classification.

1.1. Linear Models

In linear model (LM) theory, Y  is assumed to be in the form:
[ ]Y E Y e= + (20)

X ea b¢= + + (21)

where the randomness of Y  comes only from e , and it is assumed that the conditional
expectation of Y  is linear in the predictors X . The two basic assumptions in the theory
are the zero mean and constant variance of the random error component e . The
regression function (1) is then written as:

( )X Xh a b¢= + (22)
More generally, still a linear model, it can be rewritten as:

( ) newX Xh b¢= , (23)

( ) ( )( )1new dX f X … f X¢ = , , (24)

where the predictor X  is replaced by a new d -dimensional vector, newX , whose
elements are scalar functions of the random vector X .
The intercept a  in (22) may be modeled, if needed, in terms of (23) by setting
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( )1 1f X = . Equation (23) can be seen as equivalent to (22), where X  has been
transformed to newX  which became the new predictor on which Y  will be regressed.
Now b  must be estimated, and this point estimation is done for some observed values of
the predictor. Writing the equations for n  observed values gives:

b¢= +y X e (25)
If (25) is solved for b  to give the least sum of squares for the components of error
vector e , this will give, as expected, the same result as if we approximated the
conditional expectation of Y  by the set of observations y . Solving either way gives:

µ ( ) 1b -¢= XyXX (26)
Then the prediction of Y  is done by estimating its expectation which is given by:

· [ ]· µ( )X E Y Xh b¢= = (27)

For short notation we always write µY  instead of [ ]·E Y .
Nothing up to this point involves statistical inference. This is just fitting a mathematical
model using the squared-error loss function. Statistical inference starts when
considering the random error vector e  and the effect of that on the confidence interval
for b  and the confidence in predicted values of the response for particular predictor
variable, or any other needed inference. All of these important questions are answered
by the theory of linear models. A very good reference for an applied approach to linear
models, without any mathematical proofs, is [5]. For a theoretical approach and
derivations the reader is referred to [6], [3], and [7]. For very rigorous mathematical
treatment for the theory of testing statistical hypothesis the reader should visit [8]. It is
remarkable that if the joint distribution for the response and the predictor is
multinormal, the linear model assumption (21) is an exact expression for the random
variable Y . This fact arises from the fact that the conditional expectation for the
multinormal distribution is linear in the conditional variable. That is, by assuming that

( )
(28)Y

N where
X

m÷ç ÷ç , S ,÷ç ÷÷çè
: (29)

11 12

21 22

(31)(30)Y

X

m
m m

÷ç÷ç ÷ç÷ç ÷÷ çç ÷÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷÷ç ÷çè è

S S
= , S = ,

S S
(32)

then the conditional expectation of Y  on X  is given by:
[ ] 1

12 22 ( )Y XE Y X x xm m-= = + S S - (33)
For more details on the multinormal properties, see [9].

In the case of classification the classes are categorical variables but a dummy variable
can be used as coding for the class labels. Then a linear regression is carried out for this
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dummy variable on the predictors. A drawback of this approach is what is called class
masking, i.e., if more than two classes are used, one or more can be masked by others
and they may not be assigned to any of the observations in prediction. For a clear
example of masking see [10, Sec. 4.2].

1.2. Generalized Linear Models

In linear models the response variable is directly related to the regression function by a
linear expression of the form of (21). In many cases a model can be improved by
indirectly relating the response to the predictor through a linear model—some times it is
necessary as will be shown for the classification problem. This is done through a
transformation or link function g  by assuming:

[ ]( )g E Y X b¢= (34)
Now it is the transformed expectation that is modeled linearly. Hence, linear models are
merely a special case of the generalized linear models when the link function is the
identity function [ ] [ ]( )g E Y E Y= .
A very useful link function is the logit function defined by:

( ) log 0 1
1

g mm m
m

= , < <
-

(35)

Through this function the regression function is modeled in terms of the predictor as:

[ ]
exp( )

1 exp( )
XE Y

X
b

b

¢

¢=
+

(36)

which is known as logistic regression. Equation (36) implies a constraint on the
response Y , i.e., it must satisfy [ ]0 1E Y< < , a feature that makes logistic regression an
ideal approach for modeling the posterior probabilities in (12) for the classification
problem. Equation (35) models the two-class problem, i.e., binary classification, by
considering the new responses 1Y  and 2Y  to be defined in terms of the old responses

1w and 2w , the classes, as:
[ ]1 1P rY Xw= | , (37)

[ ] [ ]2 2 1P r 1 P rY X Xw w= | = - | (38)

The general case of the k -class problem can be modeled using 1K -  equations, because
of the constraint [ ]P r 1ii

Xw | = , as:

[ ]
[ ]

Prlog 1 1
P r

i
i

k

X x x i … K
X x

w b
w

¢| = = , = , , -
| =

(39)

Alternatively, (39) can be rewritten as:
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[ ]
( )

( )
1

1

exp
Pr 1 1

1 exp

i
i K

j
j

x
X x i K

x

b
w

b

¢

-
¢

=

| = = , £ £ - ,
+

(40)

[ ]
( )

1

1

1Pr
1 exp

k K

j
j

X x
x

w
b

-
¢

=

| = =
+

(41)

The question now is how to estimate ib " i . The multinomial distribution for modeling
observations is appropriate here. For illustration, consider the case of binary
classification; the log-likelihood for the n -observations can then be written as:

[ ] [ ]{ }1 1
1

( ) logPr (1 ) log(1 Pr
n

i i i i
i

l y X y Xb w b w b
=

= | , + - - | , (42)

{ }
1

log(1 )i

n
x

i i
i

y x e bb
¢¢

=
= - + (43)

To maximize this likelihood, the first derivative is set to zero to obtain:
( )

1
( ) 0

1

i

i

n x

i i x
i

l ex y set
e

b

b

b
b

¢

¢
=

¶ = - =
¶ +

(44)

This is a set of k  equations, where the vector X  can be the original predictor 1( )px … x ¢, ,
or any transformation 1( ( ) ( ))df X … f X ¢, ,  as in (24). Equation (44) is a set of non-linear
equations, and can be solved by iterative numerical methods like the Newton-Raphson
algorithm. For more details with numerical examples see [10, Sec. 4.4] or [1, Sec. 12.3].
It can be noted that (42) is valid under the assumption of the following general
distribution:

( ) ( ) ( ) exp( )i if X h X Xf q g g q¢= , , (45)
with probability ip , 1 2i = , , 1 2 1p p+ = , which is the exponential family. So logistic
regression is no longer an approximation for the posterior class probability if the
distribution belongs to the exponential family. For insightful comparison between
logistic regression and the Bayes classifier under the multinormal assumption see [11].

It is very important to mention that logistic regression, and all subsequent classification
methods, assume equal a priori probabilities. Then the ratio between the posterior
probabilities will be the same as the ratio between the densities that appear in (13).
Hence, the estimated posterior probabilities from any classification method are used in
(13) as if they are the estimated densities.

1.3. Non-linear Models
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The link function in the generalized linear models is modeled linearly in the predictors,
(34). Consequently, the response variable is modeled as a non-linear function. In
contrast to the linear models described in Section 0, in non-linear models the response
can be modeled non-linearly right from the beginning, without the need for a link
function.

2. Nonparametric Regression and Classification

In contrast to parametric regression, the regression function (1) is not modeled
parametrically, i.e., there is no particular parametric form to be imposed on the function.
Nonparametric regression is a versatile and flexible method of exploring the relationship
of two variables. It may appear that this technique is more efficient than the linear
models, but this is not the case. Linear models and nonparametric models can be
thought of as two different techniques in the analyst’s toolbox. If there is an a priori
reason to believe that the data follow a parametric form, then linear models or
parametric regression in general may provide an argument for an optimal choice. If
there is no prior knowledge about the parametric form the data may follow or no prior
information about the physical phenomenon that generated the data, there may be no
choice other than nonparametric regression.
There are many nonparametric techniques proposed in the statistical literature. Some of
these techniques have also been developed in the engineering community under
different names, e.g., artificial neural networks. What was said above, when comparing
parametric and nonparametric methods, can also be said when comparing nonparametric
methods to each other. None can be preferred overall across all situations.

This section introduces some of the nonparametric regression and classification
methods. The purpose is not to present a survey as much as to introduce the topic and
show how it relates with the parametric methods to serve one purpose, predicting a
response variable, categorical or quantitative. An excellent comprehensive source for
regression and classification methods, with practical approaches and illustrative
examples, is [10].

2.1. Smoothing Techniques

Smoothing is a tool for summarizing in a nonparametric way a trend between a response
and a predictor such that the resulting relationship is less variable than the original
response, hence the name smoothing. When the predictor is unidimensional, the
smoothing is called scatter-plot smoothing. In this section, some methods used in
scatter-plot smoothing are considered. These smoothing methods do not succeed in
higher dimensionality. This is one bad aspect of what is called the curse of
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dimensionality, which will be discussed in Section 5.

2.1.1. K -Nearest Neighbor

The regression function (1) is estimated in the K -nearest neighbor approach by:

1

1( ) ( )
n

i i
i

x W x y
n

h
=

= , (46)

{ }( ) (47)
( )

0 otherwise
x i k

i

n k i J i x N x
W x

: =ïï=
ïïî

(48)

where ( )kN x  is the set consisting of the nearest k  points to the point x . So in the case of
regression, this technique approximates the conditional mean, i.e., the regression
function that gives minimum risk, by local averaging for the response Y . In the case of
classification, the posterior probability is estimated by:

[ ]
1

1Pr ( ) ,i j

n

j i
i

x W x I
n w ww =

=
| = (49)

and I  is the indicator function defined by:
1

.
0cond

cond is True
I

cond is False
ïï=
ïïî

(50)

This accounts for replacing the continuous response in (46) by an indicator function for
each class given each point. So, the posterior probability is approximated by a frequency
of occurrence in a k -point neighborhood.

2.1.2. Nearest Neighbor

This is a special case of the K -nearest neighbor method where 1k = . It can be thought
of as narrowing the window W  on which regression is carried out. In effect, this makes
the regression function or the classifier more complex because it is trying to estimate the
distribution at each point.

2.1.3. Kernel Smoothing

In this approach a kernel smoothing function is assumed. This means that a weighting
and convolution (or mathematical smoothing) is carried out for the points in the
neighborhood of the predicted point according to the chosen kernel function. Formally
this is expressed as:
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( )
( )1

1

( ) .
i

x

i
x

x xn
h

i n
x xi

h
i

K
x y

K
h

¢

¢

-

-=

=

÷ç ÷ç ÷ç ÷ç ÷ç= ÷ç ÷ç ÷÷ç ÷ç ÷÷çè

(51)

Choosing the band-width xh  of the kernel function is not an easy task. Usually it is done
numerically by cross-validation. It is worth remarking that K -nearest neighbor
smoothing is nothing but a kernel smoothing for which the kernel function is an
unsymmetrical flat window spanning the range of the K -nearest neighbors of the point
x . The kernel (51) is called Nadaraya-Watson kernel. Historically, [12] first introduced
the window method density function estimation; then his work was pioneered by [13]
and [14] in regression.

2.2. Additive Models

Recalling (23) and noticing that the function ( )if X  is a scalar parametric function of the
whole predictor shows that linear models are parametric additive models. By dropping
the parametric assumption and letting each scalar function be a function of just one
element of the predictor, i.e., iX , allows defining a new nonparametric regression
method, namely additive models, as:

1
( ) ( ),

p

i i
i

x f Xh a
=

= + (52)

where the predictor is of dimension p . The response variable itself, Y , is modeled as in
(20) by assuming zero mean and constant variance for the random component e . Then,

( )i if X  is fit by any smoothing method defined in Section 2.1. Every function ( )i if X  fits
the value of the response minus the contribution of the other 1p -  functions from the
previous iteration. This is called the back-fitting algorithm described in [10]

2.3. Generalized Additive Models

Generalized additive models can be developed in a way analogous to how generalized
linear models were developed above, i.e., by working with a transformation of the
response variable, hence the name generalized additive models (GAM). Equation (52)
describes the regression function as an additive model; alternatively it can be described
through another link function:

( )
1

( ) ( )
p

i i
i

g x f Xh a
=

= + (53)

Again, if a logit function is used the model can be used for classification exactly as was
done in the case of generalized linear models. Rewriting the score equations (44) for the
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GAM, using the posterior probabilities as the response variable, produces the
nonparametric classification method using the GAM. Details of fitting the model can be
found in [15].

2.4. Projection Pursuit Regression

Projection Pursuit Regression (PPR), introduced by [16], is a direct attack on the
dimensionality problem, since it considers the regression function as a summation of
functions, each of which is a function of a projection of the whole predictor onto a
direction (specified by some unit vector). Formally it is expressed as:

1
( ) ( )

k

i i
i

x g xh a ¢

=
= (54)

The function ig  for every selection for the direction ia  is to be fit by a smoother in the
new single variable ixa ¢ . It should be noted that (54) assumes that the function ( )i ig Xa ¢ ,
named the ridge function, is constant along any direction perpendicular to ia . Fitting the
model is done by iteratively finding the best directions ia ’s that minimize(s) the
residual sum square of errors, hence the name pursuit. Details of fitting the model and
finding the best projection directions can be found in [16] and [10].
In (54) by deliberately setting each unit vector ia  to have zero components except

1iia = , reduces the projection pursuit method to additive models. Moreover, and
interestingly as well, by introducing the logit link function to the regression function

( )xh  in (54) suits the classification problem exactly as done in the GAM. This turns out
to be exactly the same as the single-hidden-layer neural network, as will be presented in
the next section.

2.5. Neural Networks

Neural Networks (NN) have evolved in the engineering community since the 1950s. As
illustrated in Figure 1, a neural network can be considered as a process for modeling the
output in terms of a linear combination of the inputs.

1Y 2Y kY

1X 2X 2X

1Z 2Z

Figure 1 Schematic diagram for a single hidden layer
neural network.
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The set of p  input features, i.e., the predictor components 1 pX … X, , , are weighted
linearly to form a new set of M  arguments, 1 MZ … Z, , , that go through the sigmoid
function s . The output of the sigmoid functions accounts for a hidden layer consisting
of M  intermediate values. Then these M  hidden values are weighted linearly to form a
new set of K  arguments that go through the final output functions whose output is the
response variables 1 KY … Y, , . This can be expressed mathematically in the form:

( ) 1 2m om mZ X m … Ms a a ¢= + , = , , , , (55)

0
1

1 2
M

k k k mk m
m

Y f Z k … Kb b
÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè =

= + , = , , , (56)

Figure 2 shows the function under different values of a  (called learning rate below).
The sigmoid function is defined by:

1( )
1 e ms m -=

+
(57)

Equation (56) shows that if the function f  is chosen to be the identity function, i.e.,
( )f m m= , the neural network is simply a special case of the projection pursuit method

defined in (54), where the sigmoid function has been explicitly imposed on the model
rather than being developed by any smoothing mechanism as in PPR. This is what is
done when the output of the network is quantitative. When it is categorical, i.e., the case
of classification, the contemporary trend is to model the function f  as:

1

( )
k

k

k k K

k

ef
e

m

m
m

¢

¢=

= (58)
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Figure 2 Sigmoid function under different learning rate a

In that case each output node models the posterior probability [ ]Pr k Xw | , which is
exactly what is done by the multi-logistic regression link function defined in (35).
Again, the model will be an extension to the generalized additive models as defined at
the end of Section 2.3. Excellent references for neural networks are [17] and [18]. We
conclude this section by quoting the following statement from [10]:

“There has been a great deal of hype surrounding neural networks, making them seem
magical and mysterious. As we make clear in this section, they are just nonlinear
statistical models, much like the projection pursuit regression model discussed above.”

3. Computational Intelligence

The term computational intelligence was first coined by [19] and [20]:

“A system is computationally intelligent when it: deals only with numerical (low-level)
data, has a pattern recognition component, and does not use knowledge in the AI
(Artificial Intelligence) sense; and additionally, when it (begins to) exhibit (i)
computational adaptivity; (ii) computational fault tolerance; (iii) speed approaching
human-like turnaround, and (iv) error rates that approximate human performance.”

Since that time the term Computational Intelligence (CI) has been accepted as a generic
term to the field that combines Neural Networks, Fuzzy Logic, and Evolutionary
Algorithms; see [21] and [22]. As a still-developing field, CI may incorporate other
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methodologies as a coherent part. In [23], the area of Swarm Detection is considered as
a peer paradigm to the other three mentioned above.

In the spirit of what has been discussed in the preceding sections, these methods assume
nothing about the data distributions; they try to approach the solution by merely dealing
with the data, i.e., numbers (c.f. the definition above). Hence, the CI methods, from a
purely statistical point of view, are considered as nonparametric methods. Section 2
illustrated, mathematically, how Neural Networks, a basic building block in the CI field,
is a special case of the projection pursuit, a nonparametric regression method.

4. No overall Winner among All Methods

This statement is important enough to be emphasized under a separate title, even though
it has been touched upon throughout previous sections. If there is no prior information
for the joint distribution between the response and the predictor, and if there is no prior
information about the phenomenon to which that regression or classification will be
applied, there is no overall winner among regression or classification techniques. If one
classification method is found to outperform others in some application, this is likely to
be limited to that very situation or that specific kind of problem; it may be beaten by
other methods for other situations. In the engineering community, this concept is
referred to as the No-Free-Lunch Theorem [24 Sec. 9.2]. This situation holds because
each method makes different assumptions about the application or the process being
modeled, and not all real-life applications are the same. If one or more of the
assumptions are not satisfied in a given application, the performance will not be optimal
in that setting.

5. Curse of Dimensionality and Dimensionality Reduction

In general, smoothing is difficult to implement in higher dimensions. This is because for
a fixed number of observations available, the volume size needed to cover a particular
percentage of the total number of observations increases by a power law, and thus
exponentially, with dimensionality. This makes it prohibitive to include the same
sufficient number of observations within a small neighborhood, or bandwidth, for a
sample case to smooth the response. E.g., consider a unit hyper-cube in the p -
dimensional subspace containing uniformly distributed observations; the percentage of
the points located inside a hyper-cube with side length l  is pl . This means, if the
suitable band-width for a certain smoother is l , the effective number of sample cases in
the p -dimensional problem will go as the power 1 p/ . This deteriorates the performance
dramatically for p  higher than 3. This is why the additive model, Section 2.2, and its
variants are expressed as summation of functions of just one dimension. This single
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dimension may be just a component of the predictor or a linear combination.

A very crucial sub-field in statistical learning is dimensionality reduction; alternatively
it is called feature selection in the engineering community. Qualitatively speaking, this
means selecting those predictor components that best summarize the relationship
between the response and predictor. In real-life problems, some features are statistically
dependent on others; this is referred to as multi-collinearity. On the other hand, there
may also be some components that are statistically independent with the response.
These add no additional information to the problem at all; thus they serve only as a
source of noise. This is a rapidly maturing sub-field. A remarkable publication in the
statistics literature in this regard is that by [25]. It introduces the Sliced Inverse
Regression (SIR), in which each predictor component is regressed on the response;
hence the name inverse regression. In that sense, the problem is reduced from regressing
a single response on a p -dimensional predictor to regressing p -responses on a single-
dimensional new predictor, which is far simpler than the former.

6. Unsupervised Learning

It should be noticed that the formal definition of the learning process, discussed thus far
assumed the existence of a training data set, name it, ( ){ }i i it x y: = ,t . Each element it ,
or sample case, in this set has an already known value for the response variable; this is
what enables the learning process to develop the relationship between the predictor and
the response. This is what is called supervised learning. On the contrary, in some
applications the available data set is described by { }i it x: =t  without any additional
information. This situation is called unsupervised learning. The objective in such a
situation is to understand the structure of the data from the available empirical
probability distribution of the points ix . For the special case where the data come from
different classes, the data will be represented in the hyper p -dimensional subspace , to
some extent, as disjoint clouds of data. The task in this case is called clustering, i.e.,
trying to identify those classes that best describe, in some sense, the current available
data. More formally, if the available data set is X , the objective is to find the class
vector 1[ ]k…w w ¢W= , ,  such that a criterion ( )J , WX  is minimized:

argmin ( )JW= ,WX (59)
Different criteria give rise to different clustering algorithms. More discussion on
unsupervised learning and clustering can be found in [10, 24, 26].

7. Performance of Classification Rules

From what has been discussed until now, there is not any conceptual difference between
regression and classification for the problem of supervised learning. Abstractly, both
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aim to achieve the minimum risk under a certain loss function for predicting a response
from a particular predictor. If the special case of classification is considered, there
should be some measure to assess the performance of the classification rule. Said
differently, if several classifiers are competing in the same problem, which is better?
One natural answer is to consider the risk of each classifier, as was defined in (10).

A special case of classification, which is of great interest in many applications, is binary
classification, where the number of classes is just two. In that case the risk of each
classifier is reduced to (19), which can be rewritten as:

min 12 1 1 21 2 2R c P e c P e= + (60)
where 1e  is the probability of classifying a case as belonging to class 2 when it belongs
to class 1, and 2e  is vice versa.
In the feature subspace, the regions of classification have the dimensionality p , and it is
very difficult to calculate the error components from multi-dimensional integration. It is
easier to look at (17) as:
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and ( )h X  is called the log-likelihood ratio. Now the log-likelihood ratio itself is a
random variable whose variability comes from the feature vector X , and has a PDF
conditional on the true class. This is shown in Figure 3. It can be easily shown that the
two curves in Figure 3 cross at ( ) 0h X = , where the threshold is zero. In this case the
two error components, appearing in (60), are written equivalently as:

( )1 1( ) ( )
th

he f h x dh xw
- ¥

= | , (64)

( )2 2( ) ( )h
th

e f h x dh xw
¥

= | (65)

Now assume the classifier is trained under the condition of equal prevalence and costs,
i.e., the threshold is zero. In other environments there will be different a priori
probabilities yielding to different threshold values. The error is not a sufficient metric
now, since it is function of a single fixed threshold. A more general way to assess a
classifier is provided by the Receiver Operating Characteristic (ROC) curve. This is a
plot for the two components of error, 1e  and 2e  under different threshold values. It is
conventional in medical imaging to refer to 1e  as the False Negative Fraction (FNF), and

2e  as the False Positive Fraction (FPF). This is because diseased patients typically have
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a higher output value for a test than non-diseased patients. For example, a patient
belonging to class 1 whose test output value is less than the threshold setting for the test
will be called “test negative” while the patient is in fact in the diseased class. This is a
false negative decision; hence the name FNF. The situation is reversed for the other
error component.

Figure 3. The probability of loglikelihood ratio conditional under each class. The two components
of error are indicated as the FPF and FNF, the conventional terminology in medical imaging.

Since the classification problem now can be seen in terms of the log-likelihood, it is
apparent that the error components are integrals over a particular PDF. Therefore the
resulting ROC is a monotonically non-decreasing function. A convention in medical
imaging is to plot the ( 1 )TPF FNF= -  vs. the FPF . In that case, the farther apart the
two distributions of the log-likelihood function from each other, the higher the ROC
curve and the larger the area under the curve (AUC). Figure 4 shows ROC curves for
two different classifiers.

The first one performs better since it has a lower value of 2e  at each value of 1e . Thus,
the first classifier unambiguously separates the two classes better than the second one.
Also, the AUC for the first classifier is larger than that for the second one. AUC can be
thought of as one summary metric for the ROC curve.
Formally the AUC is given by:

1

0
( ).AUC TPF d FPF= (66)

If two ROC curves cross, this means each is better than the other for a certain range of
the threshold setting, but it is worse in another range. In that case some other
performance measure can be used, such as the partial area under the ROC curve in a
specified region.

th e2=FPFe1=FNF

Pr(h(x)|ω
1
)Pr(h(x)|ω2)

h(x)

Pr
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Figure 4. ROC curves for two different classifiers. ROC1  is better than ROC 2 , since for any
error component value, the other component of classifier 1 is less than that one of classifier 2.

The two components of error in (60), or the summary measure AUC in (66), are the
parametric forms. That is, these measures can be calculated by these equations if the
posterior probabilities are known parametrically, e.g., in the case of the Bayes classifier
or by parametric regression techniques as in Section 1.
On the contrary, if the posterior probabilities are not known in a parametric form, the
error rates can be estimated only numerically from a given data set, called the testing
data set. This is done by assigning equal probability mass for each sample case, since
this is the Maximum Likelihood Estimation (MLE) for the probability mass function
under the nonparametric distribution. This can be proven by maximizing the likelihood
function:

1
( )

n

i
i

L F p
=

= (67)

under the constraint 1i ipS = . The likelihood (67) can be rewritten, by considering this
constraint, using a Lagrange multiplier as:

1 1
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The likelihood (68) is maximized by taking the first derivative and setting it to zero to
obtain:
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These n  equations along with the constraint 1i ipS =  can be solved straightforwardly to
give:

1 1i i … np
n

= , = , , (70)

That is, the nonparametric MLE of the distribution will be
1 1 ,iF mass on t i … n
n

: , = , , (71)

where n  is the size of the testing data set. In this case (2) will be reduced to:
· [ ]( ) ( ( )FR E L Y Xh h= , (72)
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where the expectation has been taken over the empirical distribution F  of the variable.
In the case of classification, (72) can be reduced further to:
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In the special case of zero loss for correct decisions in binary classification, (74) reduces
further to
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· ¶ · ¶
21 1 21 2c FNF P c FPF P= + (77)

which is the nonparametric approximation to (60) and (64). The indicator function I  is
defined in (50). The values 1n  and 2n  are the sizes of class-1 sample and class-2 sample
respectively, and ¶

1P  and ¶
2P  are the estimated a priori probabilities. The function ( )ih x  is

the estimated log-likelihood ratio at case it  obtained from estimating the posterior
probabilities with any of the nonparametric classification methods (Section 2). In the
case of 12 21 1c c= = , the so-called “0-1 loss function”, the risk is called simply the error
rate or (Probability of Misclassification (PMC)).
The two components, ·1 FNF- and ·FPF  give one point on the empirical (estimated)
ROC curve. To draw the complete curve in the nonparametric situation, the estimated
log-likelihood is calculated for each point of the available data set. Then all possible
thresholds are considered in turn, i.e., the threshold values between every two
successive estimated log-likelihood values. At each threshold value a point on the ROC
curve is calculated. Then the AUC can be calculated numerically from the empirical
ROC curve using the trapezoidal rule:
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where thn  is the number of threshold values taken over the data set. By plotting the
empirical ROC curve, it is easy to see that the AUC obtained from the trapezoidal
method is the same as the Mann-Whitney statistic—which is another form of the
Wilcoxon rank-sum test [H27]—defined by:
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The equivalence of the area under the empirical ROC and the Mann-Whitney-Wilcoxon
statistic is the basis of its use in the assessment of diagnostic tests; see [28]. [29] has
recommended it as a natural summary measure of detection accuracy on the basis of
signal-detection theory. Applications of this measure are widespread in the literature on
human and computer-aided diagnosis in medical imaging, e.g., [30]. In the field of
machine learning, [31] has recommended it as the preferred summary measure of
accuracy when a single number is desired. These references also provide general
background and access to the large literature on the subject.

It has been mentioned above that in the nonparametric situation these performance
measures are estimated from a single given data set, i.e., the testing data set or, less
formally, the testers. But as long as the distribution is unknown it is not only impossible
to calculate these measures parametrically, but it is also impossible to generate, by
simulation, testing data sets on which these metrics can be estimated. In that case the
classifier might be trained and its performance measure estimated from the same
training data set. This estimation will be a random variable whose randomness comes
from the finite training data set t . That is, under different data sets even of the same
size, the estimate will vary. Therefore it is not sufficient to assess a classifier
performance by estimating its mean, either error or AUC, without estimating the
variability.

In general, the fundamental population parameters of interest are the following: The true
performance AUC tr  conditional on a particular training data set tr  of a specified size
but over the population of testing data sets—as if we trained on tr  then tested on
infinite number of observations; the expectation of this performance over the population
of training data sets of the same size, E AUCtr tr ; and the measure of variability of this
performance over the population of training data sets, of the same size, AUCVar tr tr .
Estimators of these parameters, respectively, ·AUC ,tr

·E AUC ,tr tr  and · AUCVar tr tr , can be



Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE057 -

obtained in several ways. Parametric estimates can be obtained by modeling the
underlying distributions of the samples, e.g., as in [26].

If the distributions of the samples are either unknown or not readily modeled, then this
is a problem of nonparametric estimation. There are several traditional approaches to
using the available data in this estimation task. One approach is to have a common data
set that is used for training and testing; this approach often includes various resampling
strategies, including cross-validation and bootstrapping [32-34]. Another approach is to
maintain what might be called the traditional data hygiene of two independent data sets,
the training data set tr (simply called trainers), and the testing data set

{ ( ) 1 }i i i it t x y i n= : = , , = , ..., tsts  (simply called testers). Therefore, the reader should
keep in mind the fact that the three estimators above are functions of both tr  and ts
although they are not ts -subscripted.

The first two of these estimators, ·AUC tr  and ·E AUCtr tr , were discussed, along with their
variances, in [35] and [36], where there was only one available data set for training and
testing. In that paradigm, training was pursued on different bootstrap replications from
the available data set while testing was done by testing on the remaining observations
that did not appear in the bootstrap replications. This technique was developed in [33]
and [37], and their performance index was the total error, rather than the AUC.

There are some situations, e.g., in several public-policy-making or regulatory settings,
in which it could be highly recommended, or even mandatory, that the training and
testing sets be isolated as in the so-called traditional hygiene. This technique is analyzed
in [38].

It is worth mentioning that assessment in terms of the AUC as the index (or measure) is
straightforward to be extended to other summary measures of performance such as the
partial area under the curve (PAUC) in some specified region of interest; see [39].

8. Conclusion and Advice for Practitioners

In this article, the importance of statistical learning is stressed through demonstrating
examples from different areas and applications. The mathematical foundations of the
field, along its different methods of design, have been motivated. Last section was
dedicated to the assessment problem of a designed classifier. Bearing in mind that this
article is intended to be a tutorial article on the field, important and fundamental
references have been cited, wherever necessary, for readers interested in more
elaboration.
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Many practitioners in the field leverage some methods, in designing their classifier,
without having enough insight; this leads to fallacies in results or conclusions. Example
of this is the exaggerated use of neural networks with multiple layers leading to
overtraining. Another pitfall is using a small size training data set with respect to the
dimensionality of the problem. This is always the case in some fields, e.g., DNA
microarrays. However, a more elaborate assessment phase should follow the design
phase in these ill-posed applications. A third pitfall is assessing classifiers in only the
mean performance ignoring the variance arousing from the finite sample size.
Overlooking these conceptual and mathematical foundations—which is always
observed in the field—in both design and assessment, drives practitioners to, at best,
flukes; while their findings and conclusions, sometimes, are fragile.
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