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ABSTRACT 

Non-square linear multivariable systems means that the number of inputs and the 
number of outputs of these systems are not equal. This type of systems has certain 
difficulties in many control aspects. Squaring a non-square multivariable system, is 
done by making the number of inputs equal to the number of output; this is 
accomplished either by squaring up or by squaring down operations. In this paper 
the problem of squaring up certain non-square linear multivariable system is solved 
b:,  finding additional inputs or outputs such that the resulting square system has 
arbitrarily zero locations. The problem of regulation of this type of multivariable 
systems is tackled, based on the fact that non-square linear multivariable systems 
almost always possess no zeros. The zeros introduced by squaring up operations, 
are located at the position of an equal number of system poles and consisting fixed 
modes. By using certain output feedback, developed by the parameters of the 
system, the remaining poles are asymptotically assigned to arbitrary locations and 
the output response is nearly regulated. The proposed method is simple, efficient 
and easily programmed using MATLAB to deal with practical large scale systems. 
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1. INTRODUCTION 

In the design of multivarible feedback systems, often feedback loops are introduced 
between a selected set of measured output variables and an equal number of 
independent control inputs. Thus., given a non-square system, the first stage of 
design essentially consists of squaring that system. The squaring process may be 
either a squaring down or a squaring up, and both of them introduces additional 
invariant zeros. The zeros of the corresponding T.F have to be located in the left 
hand side of the s-plane. 
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The squaring down problem was thoroughly studied in the last decade [1], [2] and 
[3] . It is found that squaring down with the constraint of additional zeros being in 
the left hand side of the s-plane cannot in general be accomplished with static 
compensator alone. We are thus lead to the use of dynamic compensators, thereby 
increasing the order of the system. 

On the other hand, squaring up of certain class of systems is accomplished by 
finding additional inputs or outputs such that the resulting square system has 
arbitrarily zero locations [4]. In this paper the problem of regulation for non-square 
systems is tackled, based on the fact that these systems almost always possess no 
zeros [1], [2]. The zeros, introduced by squaring up operations, are located at the 
position of an equal number of system poles and consisting of fixed modes [5]. By 
using a static output feedback, developed by the parameters of the system, the 
remaining poles are asymptotically assigned to arbitrary locations and the output 
response is nearly regulated. 

The paper is organized as follows: Section 2 is devOted for the regulation of non-
square systems presented by their triplet (A,B,C) with CB having full rank, while 
conclusions of the work are found in Section 3. 

2. REGULATION OF NON-SQUARE SYSTEMS WITH CB HAVING 
FULL RANK 

Consider a linear multivariable system represented by the following state space 
equations: 

c Ax + Bu} 
y = Cx (1) 

where x, u, and y are, respectively , n, m, and p-dimensional vectors. Without loss 
of generality, assume that B and C are of full rank, in > p and rank CB = p . 
Regulation of that system is carried out in two steps. 

Step 1. Squaring Up the System 
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Squaring up is done by finding additional (m-p) x n output coupling matrix such that 
the system matrix takes the form 

5Iz 

s/ — All 	— Al2 	B1 
A21 Si A22 	B2 n — m 

  

• • . 	.• 	 (2) 

	

Ci l C12 	0 P 

• .• 

C21 	C22 	0 	p 

where [C21 C22 ] are to be determined. 

Starting by determining a similarity transformation matrix T such that 

P ( s)= 

0 

The system matrix of the squared system will be 

- Ali 	- Al2 

- A21 	- A22 	
0 /1 m 

A = TAT -1  , B = TB = and C = CT -' 

(3) 
C11 	C12 

P(s)= 

C21 Cw2 

: 	0 

: 	0 

p 

m — p 

The invariant zeros of the squared system are the eigenvalues of 

- \ r 	\\ 
C12 

/1 22 - A21 

\C211 \C22), 

Now, we turn our attention to the computation of [ C 21  C 22] such that the invariant 
zeros of the squared system could be arbitrarily located. 
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- \ 
C11 

\.C21./ 
C21 is chosen such that the matrix has full rank. This could always be 

_1 . 

	

achieved if C21 is 	in the null space of C ii  and any numerical algorithm in the 
literature, such as a singular value decomposition could be used to determine it [4]. 

To determine C22 such that the zeros are arbitrarily assigned, we argue as follows: 

Consider the matrix 

r _ \ 	\\ 

	

C11 	C1 2 

A 22  — A21 

    

C21 

 

C22 

 

  

Cu i ) — is similar to a state feedback matrix acted upon a system represented by 
C22 

 

/— 
Cii 

C21 

A22 , A 21 

  

- \ 

The matrix 

 

C12 

 

could be written as follows 

   

     

\.C22 

/— \ 
Ci2 

\,C22 

/ - 
C12 

 

0 

  

    

     

= C12 +C22 

   

'-C221 

 

 

0 
\ 

  

The problem of determining C22 reduces to finding a state feedback O22 such that 
the matrix 

 

\ C21/ \. 
U12 A21 

	

C

} 

C21/ 

C11 
C22 

/ — 	—1 

A22— A21 

 



P(s),- 

sI — Al , 
A l2  

Cl'  

C2, 

- Al2  

S/ 	A„ 

C12 

C22  

• 
• 
• B„  
• 
• 
• B2, 

0 

0 

B,2 

B22 

D 

n - p 
(4) 

m — p 
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has the desired eigenavlues. 

Step 2, Regulation of the Squared System 

Based on the fact that pole-zero cancellation prevents excessive output response in 
speeding up the closed loop dynamic [6],[7]. Regulation is achieved by assigning 
the zeros of the squared system to the positions of a subset of poles and then 
applying certain output feedback controller. 

The squared system will be a system with (Csq  B) having full rank; where Csq  is the 
output coupling matrix of the squared system. The output feedback controller takes 
the form (Csq  B)"l  J; where J is an arbitrarily diagonal matrix with specified 
eigenvalues 

By speeding up the response of the system; the poles of the closed loop system will 
be assigned, asymptotically, to the locations of the eigenvalues of the matrix J [7], 
[8]. Consequently, the output response of the squared system will be nearly 
regulated. 

If it is possible to augment the input output coupling matrix D such that rank D = m 
- p , then we argue as follows: 

The system matrix of the squared system will take the form 
* p * m-p * 

By applying certain similarity transformations P(s) could be transformed to 



Proceeding of the 1st ICEENCi cfmfei FC51-6  

sl — All 

— A21 

— Al2 

sl — A22 

Bll 

B21 

P(s ••• (5) 
0 0 0 

C21 C22 0 1) 

The invariant zeros of the system are the zeros of the invariant polynomials of the 
matrix 

Z(s) = 

— Al2 	B11 	B12 

S/ — A 22 	B21 	B22 (6) 

C22 	 0 	D 

By carrying certain elementary operations, we obtain 

—Al2—B12 	C22 	Bil 	0 

Z(s)= SI — A 22  A 	— B 	D 	C22 	B 22 _ 	1 	22 	21 	0 (7) 
0 	 0 	D 

The invariant zeros of the system are the eigenvalues of 

[
A22 -I-  B22 D I  C22 — B21 B (Al2+ B12 D C22)] 

= [A22 — B21 	Al2 — (821 B11-I  812 B22)D-1  C22 

with loss of generality D could be taken identity; consequently, C 22 is found such 
that the (n - p ) zeros are arbitrarily assigned. C21 is arbitrarily chosen. 

Remark: 
Squaring up the system by adding auxiliary outputs necessitates measuring 

the system states; hence it is necessary' , that all the states of the system has to be 
accessible. 
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3. CONCLUSIONS 

Based on the fact that zeros of linear systems are the source of unbounded peaking 
for output response. Squaring-up of non-square systems with CB having full rank is 
made such that the zeros of the squared system are located at the position of a 
subset of poles and consist of fixed modes. The pole-zero cancellation prevents 
excessive output response in speeding up the closed loop dynamics. The remaining 
poles are asymptotically assigned to certain location by using an output feedback 
and the output response is, nearly, regulated. 

Squaring up and regulation of non-square systems with CB having rank deficient is 
left for future work. 
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