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ABSTRACT

Neural Networks are attractive alternative to the classical techmques for identification and control of
complex physical systems, because of their ability to learn and approximate functions. This paper
presents the development and implementation of adaptive Multilayer Neural Network (MNN) controller
in real-time for a drive system. A MNN is first trained off-line to learn (identify) the inverse dynamics of
the system, after the training is successfully completed, the MNN is used as a feedforward controller in
the control scheme.

The advantage of the proposed controller is that the MNN 1s permanently training. On-line learning 1s
applied while the system is under control to capture any system parameter variations or disturbances.
Simulation results are presented to show the advantages of adaptive MNN controller compared to non-
adaptive MNN controller. Also, experimental results show that the adaptive MNN controller is able to
control the speed trajectory of the drive system with a high degree of accuracy, even in the presence of
disturbances.
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1 INTRODUCTION

Design of conventional control systems usually involves the development of a mathematical model of the
svstem to derivea controt law. In many of the physical systems, it may be difficult to obtain an accurate
mathematical model due to the presence of structured and unstructured uncertainties. Therefore
application of classical or adaptive control schemes t0 these systems may give unsatisfactory response for
trajectory tracking cont rol.

Instcad of driving a controller via the controlled process mathematically, neural network controller
methodology tries to establish the controller directly from input-output data of the controlled process
without the need for its mathematical model [1,2]. An advantage of using artificial neural networks
(ANNSs) is their ability to learn nonlinear functions whose analytic forms are difficult to derive and whose
solutions are burdensome to compute. ANNs can be trained with observed data from the real plant, to
reproduce the characteristics of the plant without significant prior krowledge of the plant dynamics.
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At present, there is an extremely strong interest i cmploving ANN techniques in several control
application areas such as proccss control, robotics. vision and pattern recognition. One of the most
common used neural network in the area of system identification and control is the feedforward
multilayer neural networks (MNNs). Several studies have found that a feedforward MNN with
sufficient number of hidden laycr neurons can approximate any nonlinear continuos function to any
desired accuracy through a learning algorithm |3.4|. Back-propagation learning algorithm 1s the most
common used for training the feedforward ncural networks [5.6]. The objective of neural networks
based adaptive control system for unknown nonlinear plants is to develop algorithms for identification
and control using ANNs through a learning process. Some rescarch workers [7] used the neural network
for identification and control of a drive system (DC motor) using a model reference adaptive control.
Although good simulation results were obtained. the MNN controller was non-adaptive (fixed weights).
Also. the MNN controller was not tested for disturbances and not implemented in real-time.

In this paper, an adaptive MNN controller is developed and implemented in real-time of a drive system
(DC motor. interface circuits, sensors and load). The proposed control scheme does not require the
system dynamic model and its parameters. A MNN is uscd to identify the system inverse dynamics. The
MNN is first trained off-line using the input-output data obtained from the system hardwarc setup.
After successfully training, the MNN s used as a feedforward controller in the control scheme of the
drive svstem. While the system is under control. on-line learning is used to update the weights of the
MNN at each sampling instant to generate the appropriate control voltage for the drive system to follow
a speed desired. trajectory. Advantages of the adaptive MNN (using on-line learning) compared to non-
adaptive MNN for controlling the: drive system arce presented through simulation results.

2 NEURAL NETWORKS

Artificial neural networks may be emploved to represent the brain activities. The term artificial neural
network is used to distinguish itself from the ncural svstem in the human brain. There are many types of
neural networks representing the brain  structure and operation with various degrecs of sophistication
[5.6]. Artificial computing networks are far simpler than their biological counterparts because
knowledge about actual brain functions is limited. No models have been successful in duplicating the
performance of the human brain Architecturc of ncural networks can be divided into two basic
categories: feedforwrard, and feedback (recurrent) neural networks [6]. The feedforward neural network
is commonly used for identification and control purposc

2.1 Multilayer Feedforward Neural Network

The multilayer feedforward neural network contains one input laver, one or two hidden layers and one
output layer. A fully connected feedfe,rward MNN with one hidden layer is shown in Fig. 1. The hidden
laver is connected to the input laver through the synaptic weights v,,. which form a matrix V. and to the
output layver through the synaptic ‘weights w. which form a matrix W. The relation between the output
value, O.. of the k™ output neuron and the inputs. X. to the network is given by

Nh n;
ox = fx ZW_jkf.,ZVi_,‘Xl for n,2k 21 (1)

j:() 1=0
where v j;is the weight betvween the 1 hidden neuron and i*" input neuron. w ;i is the weight between the

k" output neuron and j** hidden neuron. f is the nonlincar activation function of the neurons, n;. ny, and n,
arc: the number of input, hidden and output laver ncurons. respectively.
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Fig. 1. A three layers feedforward neural network

The input-output mapping of a MNN can be represented by
Oo=r [Wr [vX"]

where " is a nonnlinear matrix operator. The transfer functions of the hidden : nd output layer ncurons
are. in general, similar and non-linear. If the transfer functions of the hidden layer neurons are linear.
then the multilayer neural network is equivalent to a single-laver neural network

2.2 MNN Learning

Neural network learning (training) is the process of modifying the strength ¢ f the connection weights
between the network neurons. This modification leads to find an appropriate : et of weights so that the
error between the desired and actual output of the network is minimized for il training patterns. The
network training starts by initially selecting small random weight values and pr.sent ng all training data
repeatedly. The learning algorithm may be categorized as: supervised leaming and unsupervised
learning. Supervised learning 1s used for learning the feedforward ncural 1etworks. In supervised
learning, a set of input and desired output patterns (X,Y) called a training data set is required. The
training data should be normalized (rescaled) to lie between (0,1) or (=1) depending on the activation
function of the neurons. At ecach instant of time when the input vector, X is applied, the desired
response of the system is provided by a teacher (desired output), Y, . The error signal between the
desired and the actual response is used to modify neural network parameters (veights). An exemple of
supervised learning is the backpropagation algorithm [5.6].

Also there are two different schemes for training neural networks: In the first : ppreach which s called
global (batch) leaming, the weights arc adapted after application of the wholc input pattern vectors of
the learning set. In the other approach referred to as local (pattern) leaming. the weights are adapted
after apphication of each pattern of the training set.

2.3 Adaptive and Non-Adaptive MNN

If the MNN is first trained (with a training sequence of finite length), and subsequently used with the
fixed weights obtained from training, this mode of operation is referred to as "non-adaptive."
Conversely, if the MNN is trained permanently while it is used (with a traizing sequence of infinite
length), this mode of operation is referred to as "adaptive” [8].
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3 SYSTEM DESCRIPTION
The simulation and experimental studies through this paper are done for a drive system composed of a

permanent magnet DC motor, a power amplifier circuit to supply the power to the motor, a magnetic
break for loading the motor and a tacho-meter to sense the motor speed.

3.1 System Model

The DC motor dynamics are given by the following equations

di, (1) R,. K 1
—a5 == R () - o)+l 2)
dt L, =1 (B Wl
daft): - K . D1

I () - —a(t) - — Ty (1) (3)
dt - -‘Jn (() J‘d () "'EI | )

where ©. V. i R.. L. J., K, D and T, are the rotor speed. terminal voltage, armature current, armature
resistance. armature inductance. rotor inertia. torque (back emf) constant, damping constant and load
torque. respectively. The armature voltage. V, of the DC motor is supplied from the power amplifier
circuit and is proportional to its control voltage V.. If the relationshiﬁf‘bet\\'ccn V, and V. is considered a
lincar., and from equations (2) and (3). the rclationship between the control voltage and the motor spced
can be written as a difference equation as

Vik) = Bok)+yok-1)+lw(k -2) (4)

where 3. ¥ and £ are constants and their values depend on the motor parameters and the sampling
interval T. Equation (4) can also bc written in the following form

V. (k) = h(ok), ok-1), o(k-2)) (5)

The object of the system model is to find a relation between the system output and its input. This 1s
useful in the next sections to determine the number of input and output layer neurons of the neural
network controller

3.2 System Hardware Setup

The hardware setup of the drive system consists of a permanent magnet DC motor, power amplifier,
magnetic brake for load conditions, tacho-generator for spced sensing and personal computer (PC). An
interface board (A/I) and D/A converters. and digital /O lines) is used to offer a data acquisition
solution. A PC 486 AT is used for implementation of the software neural network controller. The
computer processor exccutes the softwarc controller program which - is written in C language. Data
transfer from and to the drive system is accomplished via the PC memory. The digital inputs from the
svstem interface 1o the software controller are taken through the A/D converter, while the analog
outputs from the software controller to the svstem interface are taken through D/A converter of the
interface board.
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4 MNN IDENTIFICATION OF THE SYSTEM INVERSE DYNAMICS

A MNN is used to identify the unknown system dynamics (DC motor, amy lifier circuit, sensor and
k)ad) that maps the control voltage V. to the motor speed ©. Because the MNN is used Loridentiﬁ' the
inverse dynamics of the system, the inputs to the MNN is the system output (motor speed). and the
output from the MNN is the control voltage. The MNN is trained to emulate the unknown function, A(e)
in equation (5), so the inputs to the MNN are ®(k), ®(k-1) and w(k-2) and the MNN output, V., (k) is
the estimate of the control voltage V.(k). The MNN consists of three layers. 3 neurons in tic input
layer, 7 neurons in the hidden layer and one neuron in the output Wiyer. The normalized training data
obtained from the hardware sctup is used to train the MNN ofi-line. The weights of the MNN were
randomly initialized with a small values (+ 0.2). The error signal, e(k), bet'veen the desired output,

Vc(k), and the network output, Van(k), is used to update the nwork weights du ing the learning process
through the back-propagation learning algorithm [5,6]. Fasure 2 shows the configuration of the system
identification using a MNN. The estimate of the system inverse dynamics it conamed in thx: MNN.
After the training of the MNN is completed, it is tested with a test data (not sontzined 1 the training
data). The output of the MNN was found to be vervclose to the desired output.

Ve(k) S prasreen s
Power | DC speed k)
| Amplifier Mevor Sensor e

Fig. 2. System identification using a MNN

5 ADAPTIVE MNN CONTROLLER

The objective of the motor control system is to drive the motor so that its spc 2d follow a pressecified
desired trajectory. The basic control scheme consists of the trained MNN which is used as a
feedforward controller and a fixed gain feedback controller as shown in Fig. 3. A fecdback controller is
used in the feedback loop to serve the on-line learning and to achieve low errcrs during transient. On-
line leaming is used to tune the weights of the MNN to capture any variations of system parametrs

and disturbances. The system control voltage, V¢ is composed of the output of the feedrorward
controller, V. and the output of the feedback controller, Vp.

If the MNN is trained well, then the estimate and actual system inverse dynamic; are very close, and the
MNN controller alone provides all the necessary voltage for the motor to track the desired speed
trajectory and the output of the feedback controller will be almost zero. If ther. is a mismatch between
the estimate of the system inverse dynamics and the actual system inverse dyna nics. on-line learning is
used to adjust the weights of the MNN to generate the appropriate volta; e required for a desired

trajectory.
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Fig. 3. Adaptive MNN controller for a drive system

6 SIMULATION RESULTS

Before implementing a real time controller. it 1s preferred. if possible, to cmploy a simulator rather than
the actual process to be controlled. Dynamic simulations facilitate better understanding of the controlled
dvnamic process and provide insights into the nature of the interactions between the inputs and outputs.
In addition, performance of the proposed controller can be investigated by performing tests on-dy namic
simulators. So simulation results of thc proposed adaptive MNN controller for the drive svstem 1s
performed first.  Also, the advantages of adaptive MNN controller compared to non-adaptive 1s
presented through simulation results. Several motor speed trajectories were tested for adaptive and non-
adaptive MINN controllers. For brevity. only the following trajectory is presented. Figure 4(a) shows the
desired and simulated speed trajectorics with non-adaptive (fixed weights) MNN controller when a
sudden disturbance is applied at time 3.5 sec and removed at 10.5 sec. The system control voltages are
shown in Fig. 4(b). It can be scen that the actual system output does not follow the desired output very
close. This is due to the fixed. weights of the MNN controller. To show the effectiveness of the on-line
learning, the same previous trajectory with the same disturbance is repeated with adaptive MNN
controller. Figure 5(a) shows the desired and simulated motor speed trajectories. The system control
voltages in this case are shown in Fig. 3(b) It can be scen from this figure that the simulated and

desired output trajectories are very close even in the case of disturbances.

7 EXPERIMENTAL RESULTS

The capability of the MNN controller for tracking control of the DC motor was tested in the laboraton
by applving different speed  trajectories. To ensure a robust performance, the control scheme was also
tested for sudden clisturbances. The motor system was first tested without controller (open-loop). Figurc
6(a) shows the desired and actual motor speeds when a desired constant speed of 1200 rpm and a
sudden disturbance is applied to the motor system at time 3.2 sec and removed at 9.2 sec. It is shown
from. this figure that the speed is dropped from 1200 rpm to 780 rpm during the period of disturbance
A photograph of the actual motor speed and the control voltage is shown in Fig. 6(b).

Figurc 7(a) shows the desired and actual motor speeds of the previous case with the adaptive MNN
controller. It can be seen from these figures that the actual motor speed follows the desired speed very
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closely, and the control system is able to handle the sudden disturbance appl ed to the motor system.
The output of the MNN controller changes in response to the disturbance input wkereas the ontput of
the feedback controller is approximately zero except at the starting and at th.: instant of appling the
disturbance. The MNN controller provides almost all the voltage to the motor system to track the
desired trajectory as shown in Fig. 7(b). A photograph of the actual motor speed and the control voltage
is shown in Fig. 7(c).

The system response to a parabolic speed trajectory with disturbance applied at time 3.3 sec and
removed at time 10.3 sec is shown in Fig. 8. It can be scen from Fig. 8(a) tha' the actual motor speed
follows the desired speed trajectory very closely. Figure 8(b) shows the system control voltages. It can
be seen from this figure that the MNN controller provides almost all the control input voltage to the
motor. The control input voltage provided by the feedback controller is very small compared to the
MNN controller and changes at the instants of applying and removing the disturbance. A photograph of
the actual motor speed, position and the control voltage is shown in Fig. 8(c). It can be seen that the
actual motor speed trajectory follows the desired speed trajectory very wel'. It is shown from these
results that the adaptive MNN controller is efficient for trajectory control of the irive system.
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8 CONCLUSIONS

This paper presents the development and implementation of a real-time adaptive MNN controller for a
drive system (DC motor). The advantages of this scheme is that it does not req iire the system dynamic
model and its parameters and thercfore treats the system as a black box. While the svstem (s under
control, on-line learning is used to adjust the weights of the MNN to captur:: any system parameters
variation and/or external disturbances. The advantages of the adaptive MMN over non-adaptive is
presented through simulation results. It is shown by simulation and experimental results that the
proposed control scheme with the adaptive MNN is efficient for trajectory trac <ing control of the drive
system with high degree of accuracy even in the case of sudden disturbance.
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