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ABSTRACT 
Neural Networks are attractive alternative to the classical techniques for identification and control of 
complex physical systems, because of their ability to learn and approximate functions. This paper 
presents the development and implementation of adaptive Multilayer Neural Network (MNN) controller 
in real-time for a drive system. A MNN is first trained off-line to learn (identify) the inverse dynamics of 
the system, after the training is successfully completed, the MNN is used as a feedforward controller in 

the control scheme. The advantage of the proposed controller is that the MNN is permanently training. On-line learning is 
applied while the system is under control to capture any system parameter variations or disturbances. 
Simulation results are presented to show the advantages of adaptive MNN controller compared to non-
adaptive MNN controller. Also, experimental results show that the adaptive MNN controller is able to 
control the speed trajectory of the chive system with a high degree of accuracy, even in the presence of 

disturbances. 
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I INTRODUCTION 
Design of conventional control systems usually involves the development of a mathematical model of the 
system to derive a control law. In many of the physical systems, it may be difficult to obtain an accurate 
mathematical model due to the presence of structured and unstructured uncertainties. Therefore 
application of classical or adaptive control schemes to these systems may give unsatisfactory response for 

trajectory tracking control. 
Instead of driving a controller via the controlled process mathematically, neural network controller 
methodology tries to establish the controller directly from input-output data of the controlled process 
without the need for its mathematical model 11,2]. An advantage of using artificial neural networks 
(ANNs) is their ability to learn nonlinear functions whose analytic forms are difficult to derive and whose 
solutions are burdensome to compute. ANNs can be trained with observed data from the real plant, to 
reproduce the characteristics of the plant without significant prior knowledge of the plant dynamics. 
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At present, there is an extremely strong interest in employing ANN techniques in several control 
application areas such as process control, robotics. vision and pattern recognition. One of the most 
common used neural network in the area: of system identification and control is the feedforward 
multilayer neural networks (MNNs). Several studies have found that a feedforward MNN with 
sufficient number of hidden layer neurons can approximate any, nonlinear continuos function to any 
desired accuracy through a learning algorithm 13.41. Back-propagation learning algorithm is the most 
common used for training the feedforward neural networks 15,6]. The objective of neural networks 
based adaptive control system for unknown nonlinear plants is to develop algorithms for identification 
and control using ANNs through a learning process. Some research workers [7] used the neural network 
for identification and control of a drive system (DC motor) using a model reference adaptive control. 
Although good simulation results were obtained, the MNN controller,was non-adaptive (fixed weights). 
Also, the MNN controller was not testedfor disturbances and not implemented in real-time. 
In this paper, an adaptive MNN controller is developed and implemented in real-time of a drive system 
(DC motor, interface circuits, sensors and load). The proposed control scheme does not require the 
system dynamic model and its parameters. A MNN is used to identify the system inverse dynamics. The 
MNN is first trained off-line using the input-output data.obtained from the system hardware setup. 
After successfully training, the MNN is used as a feedforward controller in the control scheme of the 
drive system. While the system is under control, on-line learning is used to update the weights of the 
MNN at each sampling instant to generate the appropriate control voltage for the drive system to follow 
a speed desired trajectory. Advantages ofthe adaptive MNN (using on-line learning) compared to non-
adaptive MNN for controlling the drive System are presented through simulation results. 

2 NEURAL NETWORKS 

Artificial neural networks may be employed to represent the brain activities. The term artificial neural 
network is used to distinguish itself from the neural system in the human brain. There are many types of 
neural networks representing the brain structure and operation with various degrees of sophistication 
[5,6]. ArtifiCial computing netWorks are far simpler than their biological counterparts because 
knowledge abdut actual brain functions is limited. No models have been successful in duplicating the 
perforniance of the human brain. Architecture of neural networks can be divided into two basic 
categories: feedfdrwrard, and feedback (recurrent) mural networks [6]. The feedforward neural network 
is commonly used for identification and control purpose. 

2.1 Multilayer Feedforward Neural Network 

The multila.yer feedforward neural network contains one input layer, one or two hidden layers and one 
output layer. A fully connected fcedfcrward MNN with one hidden layer is shown in Fig. I. The hidden 
layer is connected to the input layer through the synaptic weights v,, which form a matrix V, and to the 
output layer through the synaptic weights wjk, which form a matrix W. The relation between the output 
value, 0, of the 0 output neuron and the inputs. X. to the network is given by 

rin 
Ok f IW;kfiE 

i=0 
for n„ k I 	 (1) 

  

where vu is the weight between the? hidden neuron and input neuron, wjk is the weight between the 
0 output neuron and j th  hidden neuron, f is the nonlinear activation function of the neurons, Ili, nh  and no  
are the number of input, hidden and output layer neurons. respectively. 
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Fig. 1. A three layers feedforward neural network 

The input-output mapping of a MNN can be represented by 

o=r [w r [v x-1-1] 
where IT is a nonnlinear matrix operator. The transfer functions of the hidden yid output layer neurons 
are, in general, similar and non-linear. If the transfer functions of the hidden layer neurons are linear, 
then the multilayer neural network is equivalent to a single-layer neural network 

2.2 MNN Learning 

Neural network learning (training) is the process of modifying the strength cf the connection weights 
between the network neurons. This modification leads to find an appropriate .et of weights so that the 
error between the desired and actual output of the network is minimized for ; LII training patterns. The 
network training starts by initially selecting small random weight values and pr.:sent.ng all training data 
repeatedly. The learning algorithm may be categorized as: supervised learning and unsupervised 
learning. Supervised learning is used for learning the feedfonvard neural networks. In supervised 
learning, a set of input and desired output patterns (X,Y) called a training data set is required. The 
training data should be normalized (resealed) to lie between (0,1 I or (:=1) defending on the activation 
function of the neurons. At each instant of time when the input vector, 	is applied, the desired 
response of the system is provided by a teacher (desired output), Y, . The error signal between the 
desired and the actual response is used to modify neural network parameters (weights). An exzmple of 
supervised learning is the backpropagation algorithm [5,6]. 
Also there are two different schemes for training neural networks: In the first ; .pproach which .s called 
global (hatch) learning, the weights are adapted after application of the whole input pattern vectors of 
the learning set. In the other approach referred to as local (pattern) learning. the weights are adapted 
after application of each pattern of the training set. 

2.3 Adaptive and Non-Adaptive MNN 

If the MNN is first trained (with a training sequence of finite length), and subsequently used with the 
fixed weights obtained from training, this mode of operation is referred to as "non-adaptive." 
Conversely, if the MNN is trained permanently while it is used (with a trai ling sequence of infinite 
length), this mode of operation is referred to as "adaptive" [8]. 
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3 SYSTEM DESCRIPTION 

The simulation and experimental studies through this paper are done for a drive system composed of a 
permanent magnet DC motor, a power amplifier circuit to supply the power to the motor, a magnetic 
break for loading the motor and a tacho-meter to sense the motor speed. 

3.1 System Model 

The DC motor dynamics are given by the following equations 

dja(t) _ Ra jaw  _ K coo)  + I vt(t)  

dt 	La 	La 	1--•i 

da4t).' •_.- -4( ia (0 _ _D  cot)— -- Ti (t) 
dt '' - 	..1 	 J a 

where to, V„ ia, Ra, La, Ja, K, D and T, are the rotor speed, terminal voltage, armature current, armature 
resistance, armature inductance, rotor inertia. torque (back emf) constant, damping constant and load 
torque. respectively. The armature voltage, V, of the DC motor is supplied from the power amplifier 
circuit and is proportional to its control voltage V,. If the relationshObetween V, and V, is considered a 
linear, and from equations (2) and (3). the 'relationship between the control voltage and the motor speed 
can be written as a difference equation as 

Ve(k) = fico(k)+ yco(k —1) + 4-co(k — 2) 	 (4) 

where 15, Y and C, are constants and their values depend on the motor parameters and the sampling 
interval T. Equation (4) can also be written in the following form 

(k) = h (co(k)., co(k —1), co(k — 2)) 	 (5) 

The object of the system model is to find a relation between the system output and its input. This is 
useful in the next sections to determine the number of input and output layer neurons of the neural 
network controller. 

3.2 System Hardware Setup 

The hardware setup of the drive system consists of a permanent magnet DC motor, power amplifier, 
magnetic brake for load conditions, tacho-generator for speed sensing and personal computer (PC). An 
interface board (A/f) and D/A converters. and digital I/O lines) is used to offer a data acquisition 
solution. A PC 486 AT is used for implementation of the software neural network controller. The 
computer processor executes the software controller program which is written in C language. Data 
transfer from and to the drive system is accomplished via the PC memory. The digital inputs from the 
system interfac.e..to the software controller are taken through the A/D converter, while the analog 
outputs from the, software controller to the system interface are taken through D/A converter of the 
interface board. 
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4 MNN IDENTIFICATION OF THE SYSTEM INVERSE DYNAMICS 

A MNN is used to identify the unknown system dynamics (DC motor, amplifier circuit, sensor and 
load) that maps the control voltage V, to the motor speed or. Because the MNN is used to identify the 
inverse dynamics of the system, the inputs to the MNN is the system output (motor speed), and the 
output from the MNN is the control voltage. The MNN is trained to emulate the unlencrivn function,  h(•) 
in equation (5), so the inputs to the MNN are ar(k), 0(k-1) and ai(k-2) and them MNN output, ‘. (k) is 
the estimate of the control voltage Vc(k). The MNN consists of three layers, 3 neurons in tic input 
layer, 7 neurons in the hidden layer and one neuron in the output layer. The normalized training data 
obtained from the hardware setup is used to train the MNN oe-line. The weights of the MNN were 
randomly initialized with a small values (± 0.2). The error rignal, e(k), bet,veen the desired output, 
Vc(k), and the network output, V.(k), is used to update the nftwork weights du ing the learning process 
through the back-propagation learning algorithm [5,6]. Flgure 2 shows the configuration of the system 
identification using a MNN. The estimate of the system inverse dynamics is contained in thy MNN. 
After the training of the MNN is completed, it is toted with a test data (not eontined in the training 
data). The output of the MNN was found to be vervclose to the desired output. 

Vc(k) 	 
Power 	 DC 	 speed 	colic) 

Amplifier 	 motor 	 sensor 

MNN 

Fig. 2. System identification using a MNN 

5 ADAPTIVE MNN CONTROLLER 

The objective of the motor control system is to drive the motor so that its six 
desired trajectory. The basic control scheme consists of the trained MN 
feedfonvard controller and a fixed gain feedback controller as shown in Fig. 3. 
used in the feedback loop to serve the on-line learning and to achieve low er' 
line learning is used to tune the weights of the MNN to capture an variations of 
and disturbances. The system control voltage, Ve. is composed of the out; 
controller, V., and the output of the feedback controller, VP. 
If the MNN is trained well, then the estimate and actual system inverse dynamic' 
MNN controller alone provides all the necessary voltage for the motor to 
trajectory and the output of the feedback controller will be almost zero. If then. 
the estimate of the system inverse dynamics and the actual system inverse dyna 
used to adjust the weights of the MNN to generate the appropriate voltal 
trajectory. 
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Fig. 3. Adaptive MNN controller for a drive system 

6 SIMULATION RESULTS 

Before implementing a real time controller, it is preferred, if possible, to employ a simulator rather than 
the actual process to be controlled. Dynamic simulations facilitate better understanding of the controlled 
dynamic process and provide insights into the nature of the interactions between the inputs and outputs. 
In addition, performance of the proposed controller can be investigated by performing tests oaslynamic 
simulators. So simulation results of the proposed adaptive MNN controller for the drive system is 
performed first. Also, the advantages of adaptive MNN controller compared to non-adaptive is 
presented through simulation results. Several motor speed trajectories were tested for adaptive and non-
adaptive MNN controllers. For brevity, only the following trajectory is presented. Figure 4(a) shows the 
desired and simulated speed trajectories with non-adaptive (fixed weights) MNN controller when a 
sudden disturbance is applied at time 3.5 sec and removed at 10.5 sec. The system control voltages are 
shown in Fig. 4(b). It can be seen that the actual system output does not follow the desired output very 
close. This is due to the fixed weights of the MNN controller. To show the effectiveness of the on-line 
learning, the same previous trajectory with the same disturbance is repeated with adaptive MNN 
controller. Figure 5(a) shows the desired and simulated motor speed trajectories. The system control 
voltages in this case are shown in Fig. 5(b). It can be seen from this figure that the simulated and 
desired output trajectories are very close even in the case of disturbances. 

7 EXPERIMENTAL RESULTS 

The capability of the MNN controller for tracking control of the DC motor was tested in the laboratory 
by applying different speed trajectories. To ensure a robust performance, the control scheme was also 
tested for sudden disturbances. The motor system was first tested without controller (open-loop). Figure 
6(a) shows the desired and actual motor speeds when a desired constant speed of 1200 rpm and a 
sudden disturbance is applied to the motor system at time 5.2 sec and removed at 9.2 sec. It is shown 
from. this figure that the speed is dropped from I200.rpm to 780 rpm during the period of disturbance. 
A photograph of the actual motor speed and the control voltage is shown in Fig. 6(b). 
Figure 7(a) shows the desired and actual motor speeds of the previous case with the adaptive MNN 
controller. It can be seen from these figures that the,Actual ,motor speed follows the desired speed very 
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closely, and the control system is able to handle the sudden disturbance appl ,ed to the motor system. 
The output of the MNN controller changes in response to the disturbance input whereas the output of 
the feedback controller is approximately zero except at the starting and at th,: instant of applying the 
disturbance. The MNN controller provides almost all the voltage to the motor system to track the 
desired trajectory as shown in Fig. 7(b). A photograph of the actual motor speed and the control voltage 
is shown in Fig. 7(c). 
The system response to a parabolic speed trajectory with disturbance appl ied at time 3.3 sec and 
removed at time 10.3 sec is shown in Fig. 8. It can be seen from Fig. 8(a) tha the actual motor speed 
follows the desired speed trajectory very closely. Figure 8(b) shows the system control voltages. It can 
be seen from this figure that the MNN controller provides almost all the control input voltage to the 
motor. The control input voltage provided by the feedback controller is very small compared to the 
MNN controller and changes at the instants of applying and removing the disturbance. A photograph of 
the actual motor speed, position and the control voltage is shown in Fig. 8(c t It can be seen that the 
actual motor speed trajectory follows the desired speed trajectory very well. It is shown from these 
results that the adaptive MNN controller is efficient for trajectory control of the Irive system. 
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8 CONCLUSIONS 

This paper presents the development and implementation of a real-time adapti WIN controller for a 
drive system (DC motor). The advantages of this scheme is that it does not req Mre the system dynamic 
model and its parameters and therefore treats the system as a black box, While the system is under 
control, on-line learning is used to adjust the weights of the MNN to capture any system parameters 
variation and/or external disturbances. The advantages of the adaptive M1`•7%1 over non-adaptive is 
presented through simulation results. It is shown by simulation and experi mental results that the 
proposed control scheme with the adaptive MNN is efficient for trajectory trac <ing control of tie drive 
system with high degree of accuracy even in the case of sudden disturbance. 
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