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Abstract

This paper provides a tutorial review of modulation recognition techniques. The available
modulation recognizers are classified into three main categories. The first category is concerned
with the analog modulations only. The second category is concerned with the digital modulations
only. The third category is concerned with bothanalog and digital modulation without any prior
information about the nature of a signal. Comparisons between the available modulation
recognizers in each category are devcloped. Some of these modulation recognizers utilize the
decision-theoretic approach, some utilize the pattern recognition, some combine both approaches
and the rest utilize the ANNs approach.

I. Introduction

Signals travelling in space with different modulation types and different frequencies fall in a very
wide band. Usually, it is required to identify and monitor these signals either for military or for
civilian purposes. Civilian purposes are such as signal confirmation, interference identification and
spectrum management. Civilian authorities may swish to monitor their transmissions in order to
maintain a control over these activities as w2l as detecting and monitoring the non-licensed
transmitters. Military purposes are such as electronic warfare, surveillance and threat analysis. [n
electronic warfare applications, electronic support measures system plays an important role as a
source of information required to conduct eleatronic counter measures, threat detection, warning,
target acquisition and homing. Generally, any surveillance system in COMINT applications
consists of three main blocks: recciver front-end (activity detection and frequency down
conversion), modulation recognizer (key features extraction and classification) and output stage
(normal demodulation and information extizction). At the output stage there are several functions
performed and they are mainly related to informetior extraction, recerding and exploitations. All
these functions are preceded by signal demcdiulation. The prior information required for any
modulation recognizer is the signal bandwidth, which can be determined in the receiver front-end
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stage. The information obtained from the receiver front-end, modulation recognizer and
parameters estimator such as carrier frequency, signal bandwidth, modulation type, symbol rate, ...
etc. are gathered to perform the signal demodulation and information extraction.

Generally, there are three philosophies for approaching the modulation recognition process in the
available references namely 1) a decision-theoretic approach, 2) a statistical pattern recognition
approach and 3) an artificial neural networks (ANNs) approach. In the decision-theoretic
approach, probabilistic and hypotheses testing arguments are employed to formulate the
modulation recognition problem. In the statistical pattern recognition approach, the classification
system is divided into two subsystems. The first is a features extraction subsystem whose function
is to extract the pre-defined features from the received data. The second is a pattern recognition
subsystem, whose function is to indicate the modulation type of a signal. The work with pattern
recognition comprises two phases - 1) atraining phase to adjust the classifier structure and 2) a
test phase that gives the classification decision. The work with ANNs approach comprises three
main steps: 1) pre-processing and key features extraction, 2) a training phase to choose the best
networks structure; e.g. determine the weights and biases of the chosen networks, and 3) a test
phase, in which the performance evaluation of the chosen network is determined. The modulation
recognizers, in the available references, were developed according to any of these approaches.
There are also some recognizers combining these approaches. Also, there are five techniques for
solving the modulation recognition problem. These are: 1) spectral processing, 2) instantaneous
amplitude, phase, and frequency parameters, 3) instantaneous amplitude, phase, and frequency
histograms, 4) combination of the previous three techniques and 5) universal demodulators.

Modulation recognition brings together many aspects of communication theory such as signal
detection, parameter estimation, channel identification and tracking. Furthermore, modulation
recognition environment may vary between two extremes - from no significant noise in the best
situation to a very noisy one with interference and fading. Moreover, there are many practical
problems facing the modulation recognition process. Some of these problems are due to the radio
communication channel and the intercept receiver. These problems are such as: multi-path fading,
weak signal reception, signal distortion, frequency instability, interference from adjacent channels
and signal selection. These problems should be solved in pre-processing stage for perfect
modulation recognition. The other problems are due to the nature of the received signal. These
problems are such as: the weak segment of a signal (carrier absent or reduced and the pauses in
transmission of analog modiulation), lower SNR reception, and the transmission time and the speed
of computation. The details for some of these problems are discussed in [24] and the suitable
solutions are presentec,. Modulation recognition is extremely important for several reasons. First,
application of a sign<l to an improper demodulator may partially or completely damage the signal
information conten:. It is worth noting that any partial damage of the signal information content
considerably confises the following deciphering process which converts the demodulated message
from its non-intelligible (ciphered) form to the intelligible (deciphered) one. Second, knowing
the correct modulation type helps to recognize the threat and determine the suitable jamming
waveform. A'so, modulation recognition is important for national security.

From the modulation recognition point of view, there are many classifications for communication
signals, as shown in Fig. 1. The first classification is according to the signal information content. [n
this classification any communication signal can be categorized as one of four categories: 1)
ampl itude signal, 2) anglé modulated signal, 3) combined signal and 4) CW (unmodulated) signal.
Amplitude signal i characterized by the useful information being in the signal envelope (or more
precisely the instamtaneous amplitude). Angle modulated signal is characterized by the useful
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information, being in the instantaneous phase or in the instantancous frequency. Combined siygnal
is characterized by the useful information is comprised in both the instantar eous amplitude and
the instantaneous phase or frequency. CW signal is characterized by the fact that no useful
information is transmitted. The second classification is according to the signal spectrum symmetry
around the carrier frequency. Generally, the RF cignal spectrum is composed of a carrier
component plus two sidebands but in some types one or two of these compoiients may be lost or
reduced. Thus, due to the existence of the sidebands, any communication signa' can be categorized
as one of two categories: 1) symmetric signal and 2) asymmetric signal. I'erfectly symmetric
signal is characterized by the fact that the signal powers in the two silebands are equal.
Asymmetric signal is characterized by different powers in the two silebands. The third
classification is according to the nature of the modulating signal used. [n this classification, any
ccmmunication signal can be categorised as one of two categories: 1) analog nodulated signal :n
which the modulating signal is analog such as speech signal and 2) digitally rodulated signa , :n
which the modulating signal is digital such as data signal. In the first classification, it is requ red
for any modulation recognizer to determine where the intercepted signal :ontains the useful
information; that is to identify whether the information exists in the instantan zous amplitude, the
instantaneous phase, the instantaneous frequency, or a combination of thzm. In the second
classification, it is necessary to measure the signal spectrum symmetry around its carrier
frequency. In the third classification, it is desired to know what is the sourcz of the modulating
signal.

This papers is concerned with reviewing the most recent papers (since 1¢84) in the area of
modulation recognition. The available references [1]-[27] can be classified into three catego-ies
according to the modulation types considered in each of them. The first category is concerned vrith
the recognition of analog modulations only (AMRAS) [4], [7], [15], [17], [20], [22], [25], [26] and
[27]. The second category is concerned with the recognition of digital modulations only (DMRAs)
(1], [6], [10], [11], [13], [14], [16], [18], [19], [21], [23], (25], [26] and [27]. The third category :s
concerned with the recognition of both analog and digital modulations without any prior
information (ADMRAs) (2], (3], (5], [8], [9], [12], [26], and [27]. It is worth no:ing “hat in the first
category, none of the available references considered the VSB, and the con bined modulations
except [22]and [25] - [27]. The oldest version of modulation recognizers [2] used a bank of
demodulators, each used for only one type of modulation. An operator examining or listening to
the demodulators outputs could decide about the modulation type of the received signal. This
recognizer however requires long <ignal duration and highly skilled operator. The automatior of
this recognizer is achieved by irtroducing a set of intelligence decision algorithms at the
demodulators output as shown in Fig. 2. However, the implementation of this recognizer is
complex and requires excessive computer storage. Moreover, the number of mc dulation types that
can be recognized is based on the number of the demodulators used.

I1. Recognizers for Analog Modu'ated Signals Only (AMR \As)

Fabrizi et. al. [4] suggested a modulation recognizer which utilizes the decision-theoretic
approach for analog modulations, and it is based on the variations of bot1 the instantaneous
amplitude and the instantaneous frequency. The key features used are the rztio of the envelope
peak to its mean, and the mean of the absolute value of the instantaneous frequency. This
recognizer is used to discriminate bet een socme types of analog modulation - CW, AM, DSB,
SSB and FM. The performance evaliation of this recognizer is derived from 24 realizations euch
with 250 msec. length for each modciation typ> of interest. [n [4], it is claimed “hat with these two
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key features the discrimination between the AM and the FM signals could be achieved at SNR >
35 dB. Howeyer, SSB could be recognized from AM and FM signals at SNR > 5 dB.

Chan and Gadbois [7] developed a modulation recognizer which utilizes the decision-theoretic
approach, and itis based on the envelope characteristics of the intercepted signal. [t uses the ratio
R of the variance of the squared instantaneous amplitude to its mean square, as shown in Fig. 3, as
a decision criterion to decide about the correct modulation type. This recognizer is used for the
recognition of some analog modulated signals - CW, AM, DSB, SSB and FM. The choice for the
ratio R to discriminate between these modulation types is based on the following fact: in noise-
free signals, the ratio R is ought to be zero for FM and CW signals and close to unity for AM
signals. Also, the ratio R for DSB signal is ought to be 2 and it is equal to | for SSB signals. The
simulation results for the developed  recognizer were derived from 200 realizations for each
modulation type of interest, each with length 2048 samples (equivalent to 20 msec.) [7, Table 3].
In [7] itis claimed that at SNR = 7 dB, the probability of correct modulation recognition is 100%
for FM signals, 90.5% for AM signals, 80.0% for SSB signals and 94.0% for DSB signals.
Furthermore, in [7] nothing is mentioned about the recognition of the VSB and the combined
modulated signals. Moreover, since it depends on the envelope characteristics only, it cannot
recognize the signals having both amplitude and phase information.

Nagy [15] proposed a modulation recognizer for analog modulations. In this recognizer, the Chan
and Gadbois parameter [7], R, in addition to the variance of the instantaneous frequency
normalized to the squared sample time are used as key features to discriminate between the
different modulation type of interest. The modulation types that can be classified by this
recognizer are AM, DSB, SSB, FM, and CW. In [15], it is mentioned that the performance
evaluation of this recognizer was derived from 500 realizations, each with 250 msec. length for
each modulation type. In [15], it is claimed that the different modulation types have been
classified with success rate > 90.0% at SNR =15 dB except the SSB (66.0% success rate). So,
[15] developed another key feature, which is the mean value of the instantaneous frequency. In
this case the SSB has been classified with success rate > 94.0% at SNR = 15 dB, and the other
types have been classified with success rate 100%.

Jovanovic et. al. [17] introduced a modulation recognizer to distinguish between a pure carrier
wave (CW) and a low modulation depth AM in a noisy environment. The key feature used is the
ratio of the variance of the in-phase component to that of the quadrature component of the
complex envelope of a signal. The only thing that mentioned about the performance evaluation is
that the proposed key feature is a highly reliable tool for separating the AM signals with low
modulation depth from the unmodulated carrier even if the SNR is poor.

Al-Jalili [20] proposed a modulation recognizer to discriminate between the USB and LSB
signals. This recognizer is based on the fact that the instantaneous frequency of the USB signal has
more -ve frequency spikes than the +ve ones, and the opposite for the LSB signal. The key feature
used in this recognizer is defined as the ratio, G, of the number of -ve spikes to the number of the
+ve ones of the instantaneous frequency. So, G > 1 for USB and G <1 for LSB. In [20] the
performance measure is derived from 10 realizations, each with 128 msec. for each modulation
type and it is claimed that this recognizer perform well for SNR 20 dB.

Nandi and Azzouz [22] introduced a. global procedure for modulation recognition of the well
known analog modulation types. This recognizer utilizes the decision-theoretic approach. It
comprises two main steps. First, the decision about the modulation type is taken first from each
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available segment. Second, a global decision is determined from all the availuble segments of the
intercepred signal frame by comparing the global decision w'th each segi1ent decision. The
decision from each segment is based on four key features. These are: 1) the mzximum value of the
spectral power density of the normalized-centered instantaneous amplituce, 2) the stancard
deviation of the absolute value of the centered non-linear component of the ins:antaneous phase n
the non-weak intervals of asignal segment, 3) the standard deviation of the «lirect (not absolute)
value of the centered non-linear component of the instantaneous phase, and 4) the RF spectrum
symmetry measure around the carrier frequency of the intercepted signal. The: way for extracting
these key features is as shown in Fig. 4. In this recognizer the decision about he modulation type
is carried out according to the decision rules shown in Fig. 5. This recognizer is usec to
discriminate among the AM, DSB, VSB, LSB, USB, FM, and combined modulated signals. In
[22], all the modulation types of interest have been classified with success rate > 90.0% at the
SNR of 10 dB. Excluding the VSB, LSB, and USB, the success rate for all tl e other modulation
types of interest is > 98.0%. Furthermore, Azzouz ard Nandi [ 26] introduce:! a modification for
the decision flow of the algorithm shown in Fig. 5. In[26], tis mentioned that, based on the
aforementioned four key features, many algorithms can be developed accc rding to the chosen
decision flow. It was found that for one the modified algorithms, the ov:rall success ratz is
99.4% at the SNR of 10 dB, and it is 99.9% at the SNR of 20 dB. In [22] and 26] due to the
simplicity of both the key features extraction as shown in Fig. 4 and the deci :ion rules as shown
in [24; Figs. 2.3 and C.[-C.4] (simple logic functions), these algorithms can be used for on-line
analysis. Moreover, Nandi and Azzouz proposed a modulation recognize - which utilizes the
ANN approach [25] as shown in Fig. 6a. [t is based on a single hidden layer ANN and the same
data set used in [22]. It was found that all the modulatior types of interest have been classified
with success rate > 95.0%. Excluding the USB, the success rate is > 98.0 % at 1) dB SNR. In {27,
Azzouz and Nandi introduced a double hidden layer ANN modulation recognition algorithm.
Using the same data set in [22] and [25], it was found that all the modulati >n types of interest
have been classified with success rate > ©8.0%. The training and test procedu e of the ANNs 1re
shown in Figs. 6 and 7 respectively.

IIL. Recognizers for Digitally Modulated Signals Only (DMRAs)

Liedtke was the first to present the concept of modulation recognition applied to digital
modulations. Liedtke [1] proposed a modulation recognizer for some types of cigital modulaticns
- ASK2, FSK2, PSK2, PSK4, PSKS$ and CW. This recognizer ut lizes the universal demodularor
technique. The key features used to discriminate between these types are the amplitude histogran.
the frequency histogram, the phase difference histogram, the amplitude variance, and the
frequency variance. The classification procedure as shown in Fig. & comprises tl e following steps:
) approximate signal bandwidth estimation, 2) signal demodulation and param: ters extraction, 3)
statistical computation, and 4) automation of modulation classification, In (1] itis clear that tie
hardware implementation of this recognizer is excessively complex. In [1], it is claimed that an
error free signal, i.e. all the signal paramerers such as the carrier frequency, symiol rete, ... etc. are
exactly known, can be recognized at SNR >18 dB.

In [6] DeSimio and Glenn introduced an adaptive technique for classifying sore types of digital
modulations - ASK2, PSK2, PSK4 and FSK2. In this recognizer a set of key features derived from
the signal envelope, the signal spectra, the signal squared and the fourth power of the signal are
used to decide about the modulation type of the intercepted signal. These ki ty features are the
mean and variance of the envelope, the 1>cation of the peaks in the signal spectrum, the location of
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the peaks around twice the carrier frequency of the spectrum of the signal square, and the location
of the peaks around four time the carrier frequency of the spectrum of the signal raised to the
fourth power. In [6], the classification procedure consists of the following steps: 1) feature vectors
extraction, 2) weight vectors generation for each signal class and 3) modulation classification. In
(6], the decision functions used are generated using an adaptive technique based on the LMS
algorithm. Furthermore, the decision rule used is similar to that applied in the pattern recognition
algorithms. So, any intercepting signal is divided into two sets: a learning set, which is used to
perform the weight vectors and a test set that is used in the decision about the modulation type
using the weight vectors generated from the learning set. This classifier is trained using the values
of the extracted key features at 20 dB SNR. The only thing mentioned about the performance
evaluation of this recognizer is its ability to discriminate between PSK2 and PSK4 at the SNR of 5
dB.

Polydoros and Kim [10] introduced a modulation recognizer, following the decision-theoretic
approach, to discriminate between PSK2 and PSK4. In [10], all signal parameters such as the
carrier frequency, the initial phase, the symbol rate and the signal-to-noise ratio are assumed to be
available. This recognizer uses the log-likelihood ratio to estimate the number of levels, M, of the
MPSK signals. Also, a comparison between three classifiers for MPSK signals had been
introduced. These classifiers are: 1) phase-based classifier (PBC) that is based on the phase
difference histogram, 2) square-law classifier (SLC) that is based on the fact that squaring of
MPSK signal is MPSK with M/2 phase states, and 3) quasi-log-likelihood ratio (QLLR) classifier
which uses the likelihood ratio estimation principles. In [10], it is proved analytically that the
performance of the QLLR classifier is significantly better than the PBC or the conventional SLC.
Also, it is claimed that the QLLR classifier can be extended to address MPSK signals
classification with M > 4.

Hsue and Soliman [11] introduced a modulation recognizer based only on the zero-crossings
characteristic of the intercepted signals. The modulation classification procedure comprises three
steps: 1) extraction of the zero-crossing sequence, the zero-crossing interval sequence and the
zero-crossing interval difference sequence, 2) inter-symbol transition (IST) detection as well as
carrier frequency estimation and 3) decision about the modulation type. The phase and frequency
information are derived from the zero-crossing sequence, the zero-crossing difference sequence
and the zero-crossing interval difference sequence. The decision about the modulation type is
based on the variance of the zero-crossing interval sequence, G, as well as the frequency and phase
difference histograms. This recognizer can be implemented using a parallel processing technique
to increase the speed of computations. Also, three processors are recommended, each processor
associated to one of the zbove mentioned three sequences. However this recognizer is used to
report the modulation type of constant amplitude signals such as CW, MPSK, MFSK. In this
recognizer, the classification strategy as shown in Fig. 9 comprises two main steps; first
discrimination of single-tone (CW and MPSK) from multitone (MFSK) signals, and secondly
determination of the number of states (M). In [11], the discrimination between the single-tone and
the multi-tone is based on comparing the variance of the zero-crossing difference sequence in the
non-weak intervals of a sigral with a suitable threshold. Tae determination of the number of
states in single-tone signals is achieved by measuring the similarity of the normalized phase
difference histogram. The determination of the number of states in multi-tone signals is based on
the number of hills in the zero-crossing interval difference histogram. Finally, the performance of
this recognizer were derived from 100 realizations for each modulation type of interest. From the

simulation results it is claimed that a reasonable average probebility of correct classification is
achievable for SNR > 15 dB.
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Also. Soliman and Hsue [13] introduced another modulation recognizer bised on the statistical
moments of the intercepted signal phase. In this recognizer, the even order rnoments of the signal
phase are used to estimate the number of levels, M., in MPSK signals. The classification procedure
comprises the following steps: 1) instantaneous phase extraction, 2) :ven order mornents
computation, 3) threshold comparison and 4) decision about the modulation ty/pe. [t is claimed that
the second order moment is sufficient to discriminate the CW from the NPSK. signals and, the
eighth order moment is adequate to classify BPSK signals with reasonabe performance ¢t low
SNR. Also, it is claimed that the suggested classifier is better than the PBC ard the SLC.

Assaleh et al.[14] proposed a modulation recognizer for some types of digital rnodulations. The
types that can be classified by this recognizer are: CW, PSK2, PSK4, FSK.., and FSK4. The key
features used were derived from the averaged spectrum of the instantaneous frequency. These key
features are the mean and the standard deviation of the averaged instantanec us frequency, and the
height of the spikes in the differential instantaneous frequency. It is claimec that the perforriance
evaluation of this recognizer was derived from 1000 realizations for ea:h madulation type of
interest. Also, it was found that the success rate of the modulation type of interast is > 99.0 % at
the SNR of 15 dB. As this recognizer uses the averaging over M successive segments, long signal
duration is required and hence this recognizer is mainly suitable for the off-li1e aralysis.

Nagy [16] introduced a suggested procedure for a modulation classifier of nultichannel systems.
This classifier was accomplished by dividing the analyzed signal into individual components and
each signal component is classified using a single tone classifier. Thz types that have been
classified by this recognizer are CW, ASK, PSK2, PSK4 and FSK2. Tte developed classifier
comprises two steps. First, detect and filter each signal component in the estimated amglitude
spectrum, e.g. the FSK2 is considered as two correlated ASK2 signals. Second, compute the
differential phase to discriminate between the different types of single harmonic signal. In [16]
the performance of the developed recognizer was derived from 100 realizations for each
modulation type of interest. Finally, it is claimed that all the single-tone types (CW, ASK2, PSK2
and PSK4) have been classified with success rate > 90.0 % at 10 dB SNR except the ASK2 (=87.0
%).

Beidas and Weber [18] proposed a modulation recognizer for MFSK sigrals. This recognizer 1s
based on the time-domain Higher-Order Correlations. This classifier is used to discriminate
between the MFSK signals. This classifier comprises a bank of matched filter each of waich is
tuned to one of a prescribed frequency locations and a set of successive correlators. Also, it is
based on comparing the log likelihood function with a suitable threshcld to decide about the
number of levels of MFSK signals. In (18], it is claimed that this recognizer immunes the
imperfect knowledge of exact frequency locations.

Huang and Polydoros [19] introduced an algorithm for classifying the MPSK signals aiwditis
based on the likelihood function of the instantaneous phase. This algorithin utilizes the dezision-
theoretic approach as the likelihood function of the instantaneous phas: is compared witha
suitable threshold. This recognizer can be considered as a generalization of the modulation
recognizer introduced in [10] because it can be used for M > 4. In [20] it s claimed that t1e best
performance for the known MPSK ciassifiers (PBC, SLC, and QLLR) czn be obtained from the
QLLR classifier.
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Yang and Soliman [22] modify the modulation recognizer, introduced in [13] that uses the
statistical moments as already mentioned to estimate M in the MPSK signals. This modification is
in the way of approximating the probability distribution function of the instantaneous phase. In
[22], the Fourier series expansion is used for the exact phase distribution approximation instead of
the Tikhonov probability density function which is used in [13].In[22]itis claimed that the
proposed algorithm offers a 2 dB reduction of the SNR required for 99.0% success rate and it
offers simpler moment computations than [13]. In both [13] and [21], nothing is mentioned about
the performance evaluation of these two recognizers.

Azzouz and Nandi [23] proposed a modulation recognizer for the digital modulation types up to
4-levels (ASK2, ASK4, PSK2, PSK4, FSK2, and FSK4). The key features used are derived from
three qualifying parameters - the instantaneous amplitude, the instantaneous phase, and the
instantaneous frequency of the signal under consideration. These key features are: 1) the
maximum value of the spectral power density of the normalized-centered instantaneous amplitude,
2) the standard deviation of the absolute value of the centered noa-linear component of the
instantaneous phase in the non-weak intervals of a signal segment, 3) the standard deviation of the
direct (not absolute) value of the centered non-linear component of the instantaneous phase, 4) the
standard deviation of the absolute value of the normalized-centered instantaneous amplitude, and
5) the standard deviation of the absolute value of the normalized instantaneous frequency. A
detailed pictorial representation for key features extraction from a signal segment is shown in Fig.
10 in the form of a flowchart. In this recognizer, the discrimination between the different digitally
modulated signals is as shown in Fig. 1. In [23], all the digital modulation types of interest have
been classified with success rate > 90.0% at the SNR of 10 dB except PSK4 (89.25 % success
rate). At the SNR of 20 dB all the modulation types of interest have been classified with success
rate > 96.0%. Furthermore, Azzouz and Nandi [ 26] introduced a modification for decision flow
of the algorithm shown in Fig. 11.In [26], itis mentioned that, based on the aforementioned four
key features, many algorithms can be developed according to the chosen decision flow. It was
found that for one of the modified algorithms, the overall success rate is > 99.0% at the SNR of
10 dB, and it is 100% at the SNR of 20 dB. In [24] and [26] due to the simplicity of the both the
key features extraction as shown in Fig. 4 and the decision rules as shown in [24; Figs. 3.4, C.5
and C.6] (simple logic functions), these algorithms can be used for on-line analysis. Moreover,
Nandi and Azzouz proposed a modulation recognizer which utilizes the ANN approach [25]. It
is based on a single hidden layer ANN and the same data set used in [24]. It was found that all the
modulation types of interest have been classified with success rate > 93.0%. at 10 dB SNR and
with success rate > 97.0% at 20 dB. In [27], Azzouz and Nandi introduced a double hidden layer
ANN modulation recognition algorithm. Using the same data set in [23] and (25], it was found
that all the modulation types of interest have been classified with success rate > 96.0%. except
FSK2 (=92.5%) at the SNR of 10 dB but at SNR of 20 dB, the success rate is > 99.0%.

IV. Recognizers for Both Analog and Digital Modulations (ADMRASs)

In [2] Callaghan et al. proposed a modulation recognizer utilizing the envelope and the zero-
crossings characteristics of the intercepted signal. This recognizer uses a phase-locked loop (PLL)
for carrier recovery in the weak intervals of the intercepted signal segment. [t is worth noting that
in some modulation types such as DSB, MPSK and AM with high modulation depth, the carrier
frequency may be severely suppressed or absent. Carrier recovery during the suppressed portions
(weak intervals) is equivalent to receiving a signal with very low SNR. So, using the PLL as a
carrier recovery (hardware solution) overcome the problem of needing high SNR for accurate
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instantaneous frequency estimation from the zero-crossings. The accuracy »>f this recognizer
deteriorates rapidly if the receiver is not perfectly tuned to the center frequency. The modulation
types that can be recognized by this recognizer are CW, AM, FM, FSK2. In [2 , it 15 claimed that
this recognizer requires SNR > 20 dB for the correct recognition of the aforementioned
modulation types.

Jondral [3] proposed a modulation recognizer utilizing the pattern recogniticn approach for the
noise signal and two types of analog modulated signals - AM and SSB - as well as for four types
of digitally modulated signals - ASK2, PSK2, FSK2 and FSK4. The key featurcs uscd are derived
from the instantaneous amplitude, phase and frequency. These key features ar.: the instantanecus
amplitude, phase difference and frequency histograms. In this classifier, the instantanecus
amplitude histogram is computed for the normalized instantaneous amplitude. The aormalization
is done with respect to the maximum values of the intercepted signal. As this classifier uses the
pattern recognition approach, the received signal is divided into two adjacent se's: learning set and
test set. The segment length used in this recognizer is 4096 samples for each riodulation type. In
[3] real signals have been used and it is claimed that all the above mentione«| modulation types
have been classified with success rate > 90.0% except the SSB (=83.0%) and FSK4 (:=88.0%).

Aisbett in [S] proposed a modulation recognizer, based on some key features derived from the
instantaneous amplitude and the instantaneous frequency of a signal. In [5], i: is mentioned that
the developed key features are noise resistant, and they are AZ | AA and A2  where A is the
signal envelope, A  is the signal envelope derivative and " is the instantanecus frequency. The
estimation of these key features is derived from 10 realizations, each with 9) mszc. length, “or
each modulation type of interest. Also, another unbiased key feature is added in [5] which is the
variance of the squared instantaneous amplitude minus its squared mean. Thi: modulation types
that can be classified by this recognizer are: AM, DSB, FM, ASK2, PSK2, FSK !, and CW signals.
[n [5], it is claimed that the success rate of the discrimination between th.: modulation types
appears to be good at least for strong SNRs.

Petrovic et al. [8] suggested a modulation recognizer based on the variations and the zero-
crossing rate of the AM detector output as well as the variations in the FM dutector output. The
modulation types that can be classified by this recognizer are AM, FM, SSB, (W, ASK2, FSk.2.
This modulation recognizer comprises three main steps as shown in Fig. 1. These are: 1) AM and
FM demodulation, 2) Key features extraction, and 3) modulation classification. Threz key features
are derived from the AM detector output and they are: detect the presence of tie signal, measure
the amplitude variations and measure the instantaneous amplitude zero-crossiny rate. Also for the
FM detector output, a narrow band and a wide band FM detection are performed. The only thing
that is mentioned about the performance evaluation is that the results of the pr:liminary test with
real signals show the success of this recognizer.

Martin [9] proposed a modulation recognizer for some analog and digital modu ation types. These
types are: AM, FM, SSB, CW, ASK2, and FSK2. The key features used arz derived from the
instantaneous amplitude, the IF signal spectrum and its derivative. These kiy features are: the
amplitude histogram, the signal bandwidth, and the relationship between the spi:ctral components.
In (9] real signals have been used and it is claimed that all the modulation types of interest have
been classified with success rate > 90.0 % except the FM (=80.0%).

Dominguez et al. [12] introduced a modulation recognizer which is a general approach for both
analog and digital modulations. This recognizer is concerned with some types of analog and
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digitally modulated signals. These types are AM. DSB, SSB, FM, CW, noise and digitally
modulated signals up to 4-levels. This recognizer comprises three subsystems: 1) pre-analysis
subsystem, 2) features extraction subsystem and 3) classifier subsystem. The recognition
algorithm is based on the histograms of the instantaneous amplitude, phase and frequency. In [12],
it is claimed that this recognizer performed well and all types have been correctly classified at
SNR > 40 dB. At the SNR of 10 dB the probability of correct modulation recognition is 0 % for all
digital modulation types except for PSK4 (7.0%) and at 15 dB SNR the performance is still
wanting especially for FSK4 (56.0%), FSK2 (84.0%) and ASK4 (87.0%). In [12] the number of
samples per segment used in the performance evaluations is 3000 samples. However, it should be
noted that this work attempts to identify most of the well known analog and digital modulation
types.

Nandi and Azzouz in [26] developed a modulation recognizer for the analog modulation types
considered in [22] as well as the digital modulations types considered in [23]. The four key
features used in [22] are also used for this recognizer. Two of the key features used in [23] - the
standard deviation of the absolute value of the normalized instantaneous amplitude and frequency
are also used in this algorithm. Three other key features are introduced. These features are: 1) the
standard deviation of the normalized-centered instantaneous amplitude in the non-weak intervals
of a signal segment, 2) the kurtosis of the normalized instantaneous amplitude, and 3) the kurtosis
of the normalized instantaneous frequency. A detailed pictorial representation for the key features
extraction from an RF signal is shown in Fig. 12 in the form of a flowchart. The discrimination
between the different analog and digital modulation types are carried out according to the
procedure introduced in Fig. 13. In this recognizer, it was found that all the modulation types of
interest have been classified with success rate > 90.0% at the SNR of 15 dB, except AM (=
88.8%), ASK4 (= 77.3%), and FSK4 (= 88.0%). Also, in [26 ], an alternative view for the
decision flow algorithm presented in Fig. 13 is introduced. Based on the aforementioned nine key
features, many algorithms can be senerated according to the sequence of applying these key
features in the classification algorithm. The performance evaluations of the algorithms for the
recognition of analog and digital modulations were derived from 400 realizations for tweleve
analog modulated signals (as in [22]) as well as the six digital modulated signals (as in [23]). In
[26], it was found that the overall success rate is > 93.0% at the SNR of 15 dB. Finally, Azzouz
and Nandi [27] introduced a modulation recognizer which utilizes the ANN approach. It was
found that the overall success rate of this recognizer is > 96.0% at the SNR of 15 dB.

V. Comparisons of the reviewed modulatior recognizers

From the presentation of the aforementioned modulation recognizers (section I, III, and [V), we
fined that some of these recognizers utilize the decision theoretic approach, some utilize the
pattern recognition approach, some utilize the ANNs approach and others utilize combination of
these approaches. Table I gives a comparison between the modulation recognizers used for analog
modulated signals only. The table indicates the approach used in each recognizer. It also provides
the weak and strong points of each recognizer. Table II and [II do the same thing for DMRAs and
ADMRASs respectively.
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V. Open Issues and Proposals for Solutions

While the work of Azzouz and Nandi [22-27] have treated many of the shortcomings
found in the previous papers in the domain, they still have some shortcomings that need
further investigations. In this section, we discuss these shortcomings and provide outlines
of possible solutions. The first shortcoming is that assume exact knowledge of the carrier
frequency. In practice, this assumption is not valid. Indeed, the carrier frequency of the
intercepted signal 1is unknown and has some instability. This instability will create a noisy
component in the instantaneous phase of the intercepted signal. Consequently, signals
having amplitude modulation only may be erroneously classified as signals having both
amplitude and phase information. To overcome this problem, we propose the use of one or
more of the three following solutions: (1) on-line estimation of the carrier frequency, (2)
increasing the phase threshold used in isolating phase signals, and (3) using the higher
order statistics to reduce the effect of the noisy phase component. The carrier frequency
instability will create also the following problem. In [22] and [24-27], the spectrum
symmetry about the assumed carrier frequency is used to discriminate between symmetric
signals (such as AM, DSB and FM signals) and spectrum asymmetric signals (such as SSB
and VSB signals). The carrier frequency instability will disturbs the spectrum symmetry
about the assumed carrier frequency as depicted in Fig. 14 in which the spectrum of an AM
signal is considered. According to this figure, the power of the spectrum portion to the
right side of the assumed carrier is much higher than its left side since the carrier usually
contains a large part of the total power. In such a case, the signal will be erroneously
classified as an upper sideband signal. This problem will take place even when on-line
estimation of the carrier frequency is used since there will be always some frequency
estimation error. The great part of the power included in the carrier component will cause a
significant spectrum asymmetry about the estimated carrier frequency even when the
estimation error is small. This problem may be overcome by excluding a zone with an
“appropriate” width centered at the assumed carrier, when examining the spectrum

symmetry.

The second shortcoming is the use of high sampling frequency that is equal to eight times
the carrier frequency. This results in big storage and computational requirements. This
shortcoming may be overcomed by the use of band-pass sampling instead of the low-pass
sampling used the previous algorithms. [t may also be overcome by the use of key features
that may require less storage and computation requirements such as those derived from the
complex envelope of a signal.

The third shortcoming is that the simulations therein use sampling frequency that is
synchronized with the carrier frequency. In practice, however, the carrier frequency is
generated by the hostile transmitter whereas the sampling frequency is generated at the
interception receiver. Consequently, the two frequencies are not synchronized. Therefore

the simulations should be redone with the two frequencies being asynchronous with each
other.
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VII. Conclusions

A survey for the most of the recent papes published in the area of modulaticn recognition s
introduced. Three group of algorithms -one for analog modulations only, he second for digital
modulations only and the third for beth analog and digital modulation:, without any prior
information about the nature of a sigral, are presented. Most of these re.:ogn zers deal with a
subser of the well known modulation types and a few of them considerzd the most corr mon
modulation types. In [22] and [23], welve analog modulated signals and si . digitally modulated
ones have been carried out to measue the performance of the presented algcrithms. Comparisons
between the presented recognizers in each group are presented. Also, some general comments
about =ach recognizer are summarized in Tables [-11L. Finally, proposals sol itions for most of the

short comings in the available references are presented.
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Fig. 13 Functional flowchart for ADMRA [26]
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Fig. 14 Spectrum shape of AM signal
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