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Abstract 

This paper provides a tutorial review of modulation recognition techniques. The available 
modulation recognizers are classified into three main categories. The first category is concerned 
with the analog modulations only. The second category is concerned with the digital modulations 
only. The third category is concerned with botlf-analog and digital modulation without any prior 
information about the nature of a signal. Comparisons between the available modulation 
recognizers in each category are developed. Some of these modulation recognizers utilize the 
decision-theoretic approach, some utilize the pattern recognition, some combine both approaches 
and the rest utilize the ANNs approach. 

I. Introduction 

Signals travelling in space with different modulation types and different frequencies fall in a very 
wide band. Usually, it is required to identify and monitor these signals either for military or for 
civilian purposes. Civilian purposes are such as signal confirmation, interference identification and 
spectrum management. Civilian authorities may wish to monitor their transmissions in order to 
maintain a control over these activities as Nv.:11 as detecting and monitoring the non-licensed 
transmitters. Military purposes are such as electronic warfare, surveillance and threat analysis. In 
electronic warfare applications, electronic support measures system plays an important role as a 
source of information required to conduct electronic counter measures, threat detection, warning, 
target acquisition and homing. Generally, a'iy surveillance system in COMINT applications 
consists of three main blocks: receiver front-end (activity detection and frequency down 
conversion), modulation recognizer (key features extraction and classification) and output stage 
(normal demodulation and information extiz.ction). At the output stage there are several functions 
performed and they are mainly related to in formnt:or. extraction, recording and exploitations. All 
these functions are preceded by signal demed:Oation. The prior information required for any 
modulation recognizer is the signal bandwidth, which can be determined in the receiver front-end 
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stage. The information obtained from the receiver front-end, modulation recognizer and 
parameters estimator such as carrier frequency, signal bandwidth, modulation type, symbol rate, ... 
etc. are gathered to perform the signal demodulation and information extraction. 

Generally, there are three philosophies for approaching the modulation recognition process in the 
available references namely 1) a decision-theoretic approach, 2) a statistical pattern recognition 
approach and 3) an artificial neural networks (ANNs) approach. In the decision-theoretic 
approach, probabilistic and hypotheses testing arguments are employed to formulate the 
modulation recognition problem. In the statistical pattern recognition approach, the classification 
system is divided into two subsystems. The first is a features extraction subsystem whose function 
is to extract the pre-defined features from the received data. The second is a pattern recognition 
subsystem, whose function is to indicate the modulation type of a signal. The work with pattern 
recognition comprises two phases - 1) a training phase to adjust the classifier structure and 2) a 
test phase that gives the classification decision. The work with ANNs approach comprises three 
main steps: 1) pre-processing and key features extraction, 2) a training phase to choose the best 
networks structure; e.g. determine the weights and biases of the chosen networks, and 3) a‘test 
phase, in which the performance evaluation of the chosen network is determined. The modulation 
recognizers, in the available references, were developed according to any of these approaches. 
There are also some recognizers combining these approaches. Also, there are five techniques for 
solving the modulation recognition problem. These are: 1) spectral processing, 2) instantaneous 
amplitude, phase, and frequency parameters, 3) instantaneous amplitude, phase, and frequency 
histograms, 4) combination of the previous three techniques and 5) universal demodulators. 

Modulation recognition brings together many aspects of communication theory such as signal 
detection, parameter estimation, channel identification and tracking. Furthermore, modulation 
recognition environment may vary between two extremes - from no significant noise in the best 
situation to a very noisy one with ;interference and fading. Moreover, there are many practical 
problems facing the modulation recognition process. Some of these problems are due to the radio 
communication channel and the intercept receiver. These problems are such as: multi-path fading, 
weak signal reception, signal distortion, frequency instability, interference from adjacent channels 
and signal selection. These problems should be solved in pre-processing stage for perfect 
modulation recognition. The other problems are due to the nature of the received signal. These 
problems are such as: the weak segment of a signal (carrier absent or reduced and the pauses in 
transmission of analog modulation), lower SNR reception, and the transmission time and the speed 
of computation. The details for some of these problems are discussed in [24] and the suitable 
solutions are presentee,. Modulation recognition is extremely important for several reasons. First, 
application of a signr.il to an improper demodulator may partially or completely damage the signal 
information content. It is worth noting that any partial damage of the signal information content 
considerably confiJses the following deciphering process which converts the demodulated message 
from its non-,intelligible (ciphered) form to the intelligible (deciphered) one. Second, knowing 
the correct modulation type helps to recognize the threat and determine the suitable jamming 
waveform. Mso, modulation recognition is important for national security. 

From the modulation recognition point of view, there are many classifications for communication 
signals,. as shown in Fig. 1. The first classification is according to the signal information content. In 
this classification any communication signal can be categorized as one of four categories: I) 
amplitude signal, 2) angle modulated signal, 3) combined signal and 4) CW (unmodulated) signal. 
Amplitude signal hi chraracterized by the useful information being in the signal envelope (or more 
prei.isely the instantaneous amplitude). Angle modulated signal is characterized by the useful 
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informationn, heintl, in the instantaneous phase or in the instantaneous frequency. Combined signal 
is characterized by the useful information is comprised in both the instantaneous amplitude and 
the instantaneous phase or frequency. CW signal is characterized by the fact that no useful 
information is transmitted. The second classification is according to the signal ;pectrum symmetry 
around the .carrier frequency. Generally, the RF signal spectrum is composed of a carrier 
component plus two sidebands but in some types one or two of these components may be lost or 
reduced. Thus, due to the existence of the sidebands, any communication signal can be categorized 
as one of two categories: 1) symmetric signal and 2) asymmetric signal. l'erfeztly symmetric 
signal is characterized by the fact that the signal powers in the two sidebands are equal. 
Asymmetric signal is characterized by different powers in the two si lebands. The third 
classification is according to the nature of the modulating signal used. In thin classification, any 
communication signal can be categorised as one of two categories: I) analog modulated signal In 
which the modulating signal is analog such as speech signal and 2) digitally modulated signa , :n 
which the modulating signal is digital such as data signal. In the first classifi.:ation, it is requ red 
for any modulation recognizer to determine where the intercepted signal tonta ins the useful 
information; that is to identify whether the information exists in the instantaneous amplitude, the 
instantaneous phase, the instantaneous frequency, or a combination of th;.m. In the second 
classification, it is necessary to measure the signal spectrum symmetry around its carrier 
frequency. In the third classification, it is desired to know what is the source of the modulating 
signal. 

This papers is concerned with reviewing the most recent papers (since V, 84) in the area of 
modulation recognition. The available references [1]-[27] can be classified into three categories 
according to the modulation types considered in each of them. The first category is concerned with 
the recognition of analog modulations only (AMRAs) [4], [7], [15], [17], [20], [22], [25], [26] .ind 
[27]. The second category is concerned with the recognition of digital modulations only (DMR4s) 
[I], [6], [10], [11], [13], [14], [16], [18], [19], [21], [23], [25], [26] and [27]. T he third category ts 
concerned with the recognition of both analog and digital modulations without any prior 
information (ADMRAs) [2], [3], [5], [8], [9], [12], [26], and [27]. It is worth nosing :hat in the first 
category, none of the available references considered the VSB, and the con bined modulations 
except [22]and [25] - [27]. The oldest version of modulation recognizers [2] used a bank of 
demodulators, each used for only one type of modulation. An operator examining or listening to 
the demodulators outputs could decide about the modulation type of the received signal. This 
recognizer however requires long s;gnal duration and highly skilled operator. The automatior of 
this recognizer is achieved by introducing a set of intelligence decision algorithms at the 
demodulators output as shown in Fig. 2. However, the implementation of this recognizer is 
complex and requires excessive computer storage. Moreover, the number of modulation types that 
can be recognized is based on the number of the demodulators used. 

IL Recognizers for Analog Modu!ated Signals Only (AMR ks) 

Fabrizi et. aL. [4] suggested a modulation recognizer which utilizes the decision-theoretic 
approach for analog modulations, and it is based on the variations of bout the instantaneous 
amplitude and the instantaneous frequency. The key features used are the ratio of the envelope 
peak to its mean, and the mean of the absolute value of the instantaneous frequency. This 
recognizer is used to, discriminate be..A.'een some types of analog modulation CW, AM, DSB, 
SSB and FM. The performance evah.ation of this recognizer is derived from 24 realizations each 
with 250 msec. length for each mode:at:on typ: of interest. In [4], it is claimed •:hat with these two 
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key features the discrimination between the AM and the FM signals could be achieved at SNR > 
35 dB. However, SSB could be recognized from AM and FM signals at SNR > 5 dB. 

Chan and Gadbois [7] developed a modulation recognizer which utilizes the decision-theoretic 
approach, and it is based on the envelope characteristics of the intercepted signal. It uses the ratio 

R of the variance of the squared instantaneous amplitude to its mean square, as shown in Fig. 3, as 
a decision criterion to decide about the correct modulation type. This recognizer is used for the 
recognition of some analog modulated signals - CW, AM, DSB, SSB and FM. The choice for the 
ratio R to discriminate between these modulation types is based on the following fact: in noise-
free signals, the ratio R is ought to be zero for FM and CW signals and close to unity for AM 
signals. Also, the ratio R for DSB signal is ought to be 2 and it is equal to 1 for SSB signals. The 
simulation results for the developed recognizer were derived from 200 realizations for each 
modulation type of interest, each with length 2048 samples (equivalent to 20 msec.) [7, Table 3]. 
In [7] it is claimed that at SNR = 7 d•B, the probability of correct modulation recognition is 100% 
for FM signals, 90.5% for AM signals, 80.0% for SSB signals and 94.0% for DSB signals. 
Furthermore, in [7] nothing is mentioned about the recognition of the VSB and the combined 
modulated signals. Moreover, since it depends on the envelope characteristics only, it cannot 
recognize the signals having both amplitude and phase information. 

Nagy [15] proposed a modulation recognizer for analog modulations. In this recognizer, the Chan 
and Gadbois parameter [7], R, in addition to the variance of the instantaneous frequency 
normalized to the squared sample time are used as key features to discriminate between the 
different modulation type of interest. The modulation types that can be classified by this 
recognizer are AM, DSB, SSB, FM, and CW. In [15], it is mentioned that the performance 
evaluation of this recognizer was derived from 500 realizations, each with 250 msec. length for 
each modulation type. In [15], it is claimed that the different modulation types have been 
classified with success rate > 90.0% at SNR = 15 dB except the SSB (66.0% success rate). So, 
[15] developed another key feature, which is the mean value of the instantaneous frequency. In 
this case the SSB has been classified with success rate > 94.0% at SNR = 15 dB, and the other 
types have been classified with success rate 100%. 

Jovanovic et. al. [17] introduced a modulation recognizer to distinguish between a pure carrier 
wave (CW) and a low modulation depth AM in a noisy environment. The key feature used is the 
ratio of the variance of the in-phase component to that of the quadrature component of the 
complex envelope of a signal. The only thing that mentioned about the performance evaluation is 
that the proposed key feature is a highly reliable tool for separating the AM signals with low 
modulation depth from the unmodulated carrier even if the SNR is poor. 

Al-Jalili [20] proposed a modulation recognizer to discriminate between the USB and LSB 
signals. This recognizer is based on the fact that the instantaneous frequency of the USB signal has 
more -ve frequency spikes than the +ve ones, and the opposite for the LSB signal. The key feature 
used in this recognizer is defined as the ratio, G, of the number of -ye spikes to the number of the 
+ve ones of the instantaneous frequency. So, G > 1 for USB and G < 1 for LSB. In [20] the 
performance measure is derived from 10 realizations, each with 128 msec. for each modulation 
type and it is claimed that this recognizer perform well for SNR 	dB. 

Nandi and Azzouz [22] introduced a global procedure for modulation recognition of the well 
known analog modulation types. This recognizer utilizes the decision-theoretic approach. It 
comprises two main steps. First, the decision about the modulation type is taken first from each 
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available segment. Second, a global decision is determined from all the available segments of the 
intercepted signal frame by comparing the global decision w th each segnent decision. The 
decision from each segment is based on four key features. These are: 1) the rmz ximum value of the 
spectral power density of the normalized-centered instantaneous amplituf e, 2) the standard 
deviation of the absolute value of the centered non-linear component of the instantaneous phase in 
the non-weak intervals of a signal segment, 3) the standard deviation of the direct (not absolute) 
value of the centered non-linear component of the instantaneous phase, and 4) the RF spectrum 
symmetry measure around the carrier frequency of the intercepted signal. Thi: way for extracting 
these key features is as shown in Fig. 4. In this recognizer the decision about the modulation type 
is carried out according to the decision rules shown in Fig. 5. This recognizer is usea to 
discriminate among the AM, DSB, VSB, LSB, USB, FM, and combined modulated signals. In 
[22], all the modulation types of interest have been classified with success rate > 90.0% at the 
SNR of 10 dB. Excluding the VSB, LSB, and USB, the success rate for all ti e other modulation 
types of interest is > 98.0%. Furthermore, Azzouz and Nandi [ 26] introduced a modification for 
the decision flow of the algorithm shown in Fig. 5. In [26], t is mentioned that, based on the 
aforementioned four key features, many algorithms can be developed according to the chosen 
decision flow. It was found that for one the modified algorithms, the overall success rate is 
99.4% at the SNR of 10 dB, and it is 99.9% at the SNR of 20 dB. In [22] and [26] due to the 
simplicity of both the key features extraction as shown in Fig. 4 and the decision rules as shown 
in [24; Figs. 2.3 and C. I-C.4] (simple logic functions), these algorithms can be used for on-line 
analysis. Moreover, Nandi and Azzouz proposed a modulation recognize-  which utilizes the 
ANN approach [25] as shown in Fig. 6a. It is based on a single hidden layer ANN and the same 
data set used in [22]. It was found that all the modulation types of interest h.lve been classified 
with success rate > 95.0%. Excluding the USB, the success rate is > 98.0 % at 1) dB SNR. In [2T, 
Azzouz and Nandi introduced a double hidden layer ANN modulation recIgnition algorithm. 
Using the same data set in [22] and [25], it was found that all the modulation types of interest 
have been classified with success rate > 98.0%. The training and test procedwe of the ANNs are 
shown in Figs. 6 and 7 respectively. 

III. Recognizers for Digitally Modulated Signals Only (DM:12As) 

Liedtke was the first to present the concept of modulation recognition applied to digital 
modulations. Liedtke [I] proposed a modulation recognizer for some types of digital modulaticns 
- ASK2, FSK2, PSK2, PSK4, PSK8 and CIV. This recognizer utilizes the unit ersai demodulator 
technique. The key features used to discriminate between these types are the amplitude histogram.. 
the frequency histogram, the phase difference histogram, the amplitude variance, and the 
frequency variance. The classification procedure as shown in Fig. 8 comprises tl e following steps: 
I) approximate signal bandwidth estimation, 2) signal demodulation and paramdters extraction, 3) 
statistical computation, and 4) automation of modulation classification. In [1] it is clear that t ie  
hardware implementation of this recognizer is excessively complex. In [1], it is claimed that an 
error free signal, i.e. all the signal parameters such as the carrier frequency, symi ... etc. are 
exactly known; can be recognized at SNR >18 dB. 

In [6] DeSimio and Glenn introduced an adaptive technique for classifying some types of digital 
modulations - ASK2, PSK2, PSK4 and FSK2. In this recognizer a set of key feat ures derived from 
the signal envelope, the signal spectra, the signal squared and the fourth power of the signal are 
used to decide about the modulation type of the intercepted signal. These lot)/ features are the 
mean and variance of the envelope, thel:c2tion of the peaks in the signal spectrum, tf,e location of 
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the peaks around twice the carrier frequency of the spectrum of the signal square, and the location 
of the peaks around four time the carrier frequency of the spectrum of the signal raised to the 
fourth power. In [6], the classification procedure consists of the following steps: I) feature vectors 
extraction, 2) weight vectors generation for each signal class and 3) modulation classification. In 
[6], the decision functions used are generated using an adaptive technique based on the LMS 
algorithm. Furthermore, the decision rule used is similar to that applied in the pattern recognition 
algorithms. So, any intercepting signal is divided into two sets: a learning set, which is used to 
perform the weight vectors and a test set that is used in the decision about the modulation type 
using the weight vectors generated from the learning set. This classifier is trained using the values 
of the extracted key features at 20 dB SNR. The only thing mentioned about the performance 
evaluation of this recognizer is its ability to discriminate between PSK2 and PSK4 at the SNR of 5 

dB. 

Polydoros and Kim [10] introduced a modulation recognizer, following the decision-theoretic 
approach, to discriminate between PSK2 and PSK4. In [10], all signal parameters such as the 
carrier frequency, the initial phase, the symbol rate and the signal-to-noise ratio are assumed to be 
available. This recognizer uses the log-likelihood ratio to estimate the number of levels, M, of the 
MPSK signals. Also, a comparison between three classifiers for MPSK signals had been 
introduced. These classifiers are: 1) phase-based classifier (PBC) that is based on the phase 
difference histogram, 2) square-law classifier (SLC) that is based on the fact that squaring of 
MPSK signal is MPSK with M/2 phase states, and 3) quasi-log-likelihood ratio (QLLR) classifier 
which uses the likelihood ratio estimation principles. In [10], it is proved analytically that the 
performance of the QLLR classifier is significantly better than the PBC or the conventional SLC. 
Also, it is claimed that the QLLR classifier can be extended to address MPSK signals 
classification with M> 4. 

Hsue and Soliman [11] introduced a modulation recognizer based only on the zero-crossings 
characteristic of the intercepted signals. The modulation classification procedure comprises three 
steps: 1) extraction of the zero-crossing sequence, the zero-crossing interval sequence and the 
zero-crossing interval difference sequence, 2) inter-symbol transition (IST) detection as well as 
carrier frequency estimation and 3) decision about the modulation type. The phase and frequency 
information are derived from the zero-crossing sequence, the zero-crossing difference sequence 
and the zero-crossing interval difference sequence. The decision about the modulation type is 
based on the variance of the zero-crossing interval sequence, G, as well as the frequency and phase 
difference histograms. This recognizer can be implemented using a parallel processing technique 
to increase the speed of computations. Also, three processors are recommended, each processor 
associated to one of the above mentioned three sequences. However this recognizer is used to 
report the modulation type of constant amplitude signals such as CW, MPSK, MFSK. In this 
recognizer, the classification strategy as shown in Fig. 9 comprises two main steps; first 
discrimination of single-tone (CW and MPSK) from multi-tone (MFSK) signals, and secondly 
determination of the number of states (M). In [I I], the discrimination between the single-tone and 
the multi-tone is based on comparing the variance of the zero-crossing difference sequence in the 
non-weak intervals of a sigral with a suitable threshold. Tae determination of the number of 
states in single-tone signals is achieved by measuring the similarity of the normalized phase 
difference histogram. The determination of the number of states in multi-tone signals is based on 
the number of hills in the zero-crossing interval difference histogram. Finally, the performance of 
this recognizer were derived from 100 realizations for each modulation type of interest. From the 
simulation results it is claimed that a reasonable average probability of correct classification is 
achievable for SNR > 15 dB. 
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Also, Soliman and Hsue [13] introduced another modulation recognizer based on the statistical 
moments of the intercepted signal phase. In this recognizer, the even order moments of the signal 
phase are used to estimate the number of levels, M, in MPSK signals. The classification procedure 
comprises the following steps: 1) instantaneous phase extraction, 2) wen order moments 
computation, 3) threshold comparison and 4) decision about the modulation type. it is claimed that 
the second order moment is sufficient to discriminate the CW from the N [PSI( signals and, the 
eighth order moment is adequate to classify BPSK signals with reasonabie performance at low 
SNR. Also, it is claimed that the suggested classifier is better than the PBC and the SLC. 

Assaleh et al. [14] proposed a modulation recognizer for some types of diEttal modulations,. The 
types that can be classified by this recognizer are: CW, PSK2, PSK4, FSKI, and FSK4. The key 
features used were derived from the averaged spectrum of the instantaneous frequency. These key 
features are the mean and the standard deviation of the averaged instantaneous frequency, and the 
height of the spikes in the differential instantaneous frequency. It is claimed that the performance 
evaluation of this recognizer was derived from 1000 realizations for each modulation type of 
interest. Also, it was found that the success rate of the modulation type of interest is > 99.0 °A) at 
the SNR of 15 dB. As this recognizer uses the averaging over M successive segments, long signal 
duration is required and hence this recognizer is mainly suitable for the off-li ie analysis. 

Nagy [16] introduced a suggested procedure for a modulation classifier of .nultichannel systems. 
This classifier was accomplished by dividing the analyzed signal into individual components and 
each signal component is classified using a single tone classifier. The types that have been 
classified by this recognizer are CW, ASK, PSK2, PSK4 and FSK2. Tile developed classifier 
comprises two steps. First, detect and filter each signal component in tF e estimated amplitude 
spectrum, e.g. the FSK2 is considered as two correlated ASK2 signals. Second, compute the 
differential phase to discriminate between the different types of single harmonic signal. In [16] 
the performance of the developed recognizer was derived from 100 realizations for each 
modulation type of interest. Finally, it is claimed that all the single-tone types (C:W, ASK2, PSK2 
and PSK4) have been classified with success rate > 90.0 % at 10 dB SNR e),cept the ASK2 (=87.0 
%). 

Beidas and Weber [18] proposed a modulation recognizer for MFSK signals. This recognizer is 
based on the time-domain Higher-Order Correlations. This classifier is used to discriminate 
between the MFSK signals. This classifier comprises a bank of matched filter each of w rich is 
tuned to one of a prescribed frequency locations and a set of successive correlators. Also, it is 
based on comparing the log likelihood function with a suitable threshold to decide about the 
number of levels of MFSK signals. In [18], it is claimed that this recognizer immunes the 
imperfect knowledge of exact frequency locations. 

Huang and Polydoros [19] introduced an algorithm for classifying the APSK signals aid it is 
based on the likelihood function of the instantaneous phase. This algorithm utilizes the decision-
theoretic approach as the likelihood function of the instantaneous phase is compared with a 
suitable threshold. This recognizer can be considered as a generalization of the modulation 
recognizer introduced in [10] because it can be used for M > 4. In [20] it .s claimed that Me best 
performance for the known MPSK classifiers (PBC, SLC, and QLLR) can be obtained from the 
QLLR classifier. 
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Yang and Soliman [22] modify the modulation recognizer, introduced in [13] that uses the 
statistical moments as already mentioned to estimate M in the MPSK signals. This modification is 
in the way of approximating the probability distribution function of the instantaneous phase. In 
[22], the Fourier series expansion is used for the exact phase distribution approximation instead of 
the Tikhonov probability density function which is used in [13]. In [22] it is claimed that the 
proposed algorithm offers a 2 dB reduction of the SNR required for 99.0% success rate and it 
offers simpler moment computations than [13]. In both [13] and [21], nothing is mentioned about 
the performance evaluation of these two recognizers. 

Azzouz and Nandi [23] proposed a modulation recognizer for the digital modulation types up to 
4-levels (ASK2, ASK4, PSK2, PSK4, FSK2, and FSK4). The key features used are derived from 
three qualifying parameters - the instantaneous amplitude, the instantaneous phase, and the 
instantaneous frequency of the signal under consideration. These key features are: I) the 
maximum value of the spectral power density of the normalized-centered instantaneous amplitude, 
2) the standard deviation of the absolute value of the centered no.t-linear component of the 
instantaneous phase in the non-weak intervals of a signal segment, 3) the standard deviation of the 
direct (not absolute) value of the centered non-linear component of the instantaneous phase, 4) the 
standard deviation of the absolute value of the normalized-centered instantaneous amplitude, and 
5) the standard deviation of the absolute value of the normalized instantaneous frequency. A 
detailed pictorial representation for key features extraction from a signal segment is shown in Fig. 
10 in the form of a flowchart. In this recognizer, the discrimination between the different digitally 
modulated signals is as shown in Fig. 11. In [23], all the digital modulation types of interest have 
been classified with success rate > 90.0% at the SNR of 10 dB except PSK4 (89.25 % success 
rate). At the SNR of 20 dB all the modulation types of interest have been classified with success 
rate > 96.0%. Furthermore, Azzouz and Nandi [ 26] introduced a modification for decision flow 
of the algorithm shown in Fig. 11. In [26], it is mentioned that, based on the aforementioned four 
key features, many algorithms can be developed according to the chosen decision flow. It was 
found that for one of the modified algorithms, the overall success rate is > 99.0% at the SNR of 
10 dB, and it is 100% at the SNR of 20 dB. In [24] and [26] due to the simplicity of the both the 
key features extraction as shown in Fig. 4 and the decision rules as shown in [24; Figs. 3.4, C.5 
and C.6] (simple logic functions), these algorithms can be used for on-line analysis. Moreover, 
Nandi and Azzouz proposed a modulation recognizer which utilizes the ANN approach [25]. It 
is based on a single hidden layer ANN and the same data set used in [24]. It was found that all the 
modulation types of interest have been classified with success rate > 93.0%. at 10 dB SNR and 
with success rate > 97.0% at 20 dB. In [27], Azzouz and Nandi introduced a double hidden layer 
ANN modulation recognition algorithm. Using the same data set in [23] and [25], it was found 
that all the modulation types of interest have been classified with success rate > 96.0%. except 
FSK2 (=92.5%) at the SNR of 10 dB but at SNR of 20 dB, the success rate is > 99.0%. 

IV. Recognizers for Both Analog and Digital Modulations (ADMRAs) 

In [2] Callaghan et al. proposed a modulation recognizer utilizing the envelope and the zero-
crossings characteristics of the intercepted signal. This recognizer uses a phase-locked loop (PLL) 
for carrier recovery in the weak intervals of the intercepted signal segment. It is worth noting that 
in some modulation types such as DSB, MPSK and AM with high modulation depth, the carrier 
frequency may be severely suppressed or absent. Carrier recovery during the suppressed portions 
(weak intervals) is equivalent to receiving a signal with very low SNR. So, using the PLL as a 
carrier recovery (hardware solution) overcome the problem of needing high SNR for accurate 
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instantaneous frequency estimation from the zero-crossings. The accuracy if this recognizer 
deteriorates rapidly if the receiver is not perfectly tuned to the center frequency. The modulation 
types that can be recognized by this recognizer are CW, AM, FM, FSK2. In [2 , it is claimed that 
this recognizer requires SNR > 20 dB for the correct recognition of the aforementioned 
modulation types. 

Jondral [3] proposed a modulation recognizer utilizing the pattern recognition approach for the 
noise signal and two types of analog modulated signals - AM and SSB - as well as for four types 
of digitally modulated signals - ASK2, PSK2, FSK2 and FSK4. The key features used are derived 
from the instantaneous amplitude, phase and frequency. These key features arli the instantaneous 
amplitude, phase difference and frequency histograms. In this classifier, the instantaneous 
amplitude histogram is computed for the normalized instantaneous amplitude. The aormalization 
is done with respect to the maximum values of the intercepted signal. As this classifier uses the 
pattern recognition approach, the received signal is divided into two adjacent secs: learning set and 
test set. The segment length used in this recognizer is 4096 samples for each Modulation type. In 
[3] real signals have been used and it is claimed that all the above mentioned modulation types 
have been classified with success rate > 90.0% except the SSB (=83.0%) and FSK4 (=88.0%). 

Aisbett in [5] proposed a modulation recognizer, based on some key features derived from the 
instantaneous amplitude and the instantaneous frequency of a signal. In [5], i t is mentioned that 
the developed key features are noise resistant, and they are A2  , AA and A2 	where A is the 
signal envelope, A is the signal envelope derivative and 	is the instantaneous frequency. The 
estimation of these key features is derived from 10 realizations, each with 90 msec. length, 'or 
each modulation type of interest. Also, another unbiased key feature is added in [5] which is the 
variance of the squared instantaneous amplitude minus its squared mean. Thi: modulation types 
that can be classified by this recognizer are: AM, DSB, FM, ASK2, PSK2, FSK1, and CW signals. 
In [5], it is claimed that the success rate of the discrimination between thi: modulation types 
appears to be good at least for strong SNRs. 

Petrovic et al. [8] suggested a modulation recognizer based on the variations and the zero-
crossing rate of the AM detector output as well as the variations in the FM detector output. The 
modulation types that can be classified by this recognizer are AM, FM, SSB, 	ASK2, FSK2. 
This modulation recognizer comprises three main steps as shown in Fig. 11. Those are: 1) AM and 
FM demodulation, 2) Key features extraction, and 3) modulation classification. Three key features 
are derived from the AM detector output and they are: detect the presence oft le signal, measure 
the amplitude variations and measure the instantaneous amplitude zero-crossini; rate. Also for the 
FM detector output, a narrow band and a wide band FM detection are perform ed. The only thing 
that is mentioned about the performance evaluation is that the results of the pr :liminary test with 
real signals show the success of this recognizer. 

Martin [9] proposed a modulation recognizer for some analog and digital modulation types. These 
types are: AM, FM, SSB, CW, ASK2, and FSK2. The key features used at derived from the 
instantaneous amplitude, the IF signal spectrum and its derivative. These kliy features are: the 
amplitude histogram, the signal bandwidth, and the relationship between the sip' ictrat components. 
In [9] real signals have been used and it is claimed that all the modulation types of interest have 
been classified with success rate > 90.0 % except the FM (=80.0%). 

Dominguez et al. [12] introduced a modulation recognizer which is a general approach for both 
analog and digital modulations. This recognizer is concerned with some types of analog and 
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digitally modulated signals. These types are AM, DSB, SSB, FM, CW, noise and digitally 
modulated signals up to 4-levels. This recognizer comprises three subsystems: 1) pre-analysis 
subsystem, 2) features extraction subsystem and 3) classifier subsystem. The recognition 
algorithm is based on the histograms of the instantaneous amplitude, phase and frequency. In [12], 
it is claimed that this recognizer performed well and all types have been correctly classified at 
SNR > 40 dB. At the SNR of 10 dB the probability of correct modulation recognition is 0 % for all 
digital modulation types except for PSK4 (7.0%) and at 15 dB SNR the performance is still 
wanting especially for FSK4 (56.0%) , FSK2 (84.0%) and ASK4 (87.0%). In [12] the number of 
samples per segment used in the performance evaluations is 3000 samples. However, it should be 
noted that this work attempts to identify most of the well known analog and digital modulation 

types. 

Nandi and Azzouz in [26] developed a modulation recognizer for the analog modulation types 
considered in [22] as well as the digital modulations types considered in [23]. The four key 
features used in [22] are also used for this recognizer. Two of the key features used in [23] - the 
standard deviation of the absolute value of the normalized instantaneous amplitude and frequency 
are also used in this algorithm. Three other key features are introduced. These features are: I) the 
standard deviation of the normalized-centered instantaneous amplitude in the non-weak intervals 
of a signal segment, 2) the kurtosis of the normalized instantaneous amplitude, and 3) the kurtosis 
of the normalized instantaneous frequency. A detailed pictorial representation for the key features 
extraction from an RF signal is shown in Fig. 12 in the form of a flowchart. The discrimination 
between the different analog and digital modulation types are carried out according to the 
procedure introduced in Fig. 13. In this recognizer, it was found that all the modulation types of 
interest have been classified with success rate > 90.0% at the SNR of 15 dB, except AM (= 
88.8%), ASK4 (= 77.3%), and FSK4 (= 88.0%). Also, in [26 ], an alternative view for the 
decision flow algorithm presented in Fig. 13 is introduced. Based on the aforementioned nine key 
features, many algorithms can be generated according to the sequence of applying these key 
features in the classification algorithm. The performance evaluations of the algorithms for the 
recognition of analog and digital modulations were derived from 400 realizations for tweleve 
analog modulated signals (as in [22]) as well as the six digital modulated signals (as in [23]). In 
[26], it was found that the overall success rate is > 93.0% at the SNR of 15 dB. Finally, Azzouz 

and Nandi [27] introduced a modulation recognizer which utilizes the ANN approach. It was 
found that the overall success rate of this recognizer is > 96.0% at the SNR of 15 dB. 

V. Comparisons of the reviewed modulation recognizers 

From the presentation of the aforementioned modulation recognizers (section II, III, and IV), we 
fined that some of these recognizers utilize the decision theoretic approach, some utilize the 
pattern recognition approach, some utilize the ANNs approach and others utilize combination of 
these approaches. Table I gives a comparison between the modulation recognizers used for analog 
modulated signals only. The table indicates the approach used in each recognizer. It also provides 
the weak and strong points of each recognizer. Table II and III do the same thing for DMRAs and 
ADMRAs respectively. 
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IV. Open Issues and Proposals for Solutions 

While the work of Azzouz and Nandi [22-27] have treated many of the shortcomings 
found in the previous papers in the domain, they still have some shortcomings that need 
further investigations. In this section, we discuss these shortcomings and provide outlines 
of possible solutions. The first shortcoming is that assume exact knowledge of the carrier 
frequency. In practice, this assumption is not valid. Indeed, the carrier frequency of the 
intercepted signal is unknown and has some instability. This instability will create a noisy 
component in the instantaneous phase of the intercepted signal. Consequently, signals 
having amplitude modulation only may be erroneously classified as signals having both 
amplitude and phase information. To overcome this problem, we propose the use of one or 
more of the three following solutions: (1) on-line estimation of the carrier frequency her 

hi , (2) 

increasing the phase threshold used in isolating phase signals, and (3) using the g 
order statistics to reduce the effect of the noisy phase component. The carrier frequency 
instability will create also the following problem. In [22] and [24-27], the spectrum 
symmetry about the assumed carrier frequency is used to discriminate between symmetric 
signals (such as AM, DSB and FM signals) and spectrum asymmetric signals (such as SSB 
and VSB signals). The carrier frequency instability will disturbs the spectrum symmetry 
about the assumed carrier frequency as depicted in Fig. 14 in which the spectrum of an AM 
signal is considered. According to this figure, the power of the spectrum portion to the 
right side of the assumed carrier is much higher than its left side since the carrier usually 
contains a large part of the total power. In such a case, the signal will be erroneously 
classified as an upper sideband signal. This problem will take place even when on-line 
estimation of the carrier frequency is used since there will be always some frequency 
estimation error. The great part of the power included in the carrier component will cause a 
significant spectrum asymmetry about the estimated carrier frequency even when the 
estimation error is small. This problem may be overcome by excluding a zone with an 

"appropriate" 	width centered at the assumed carrier, when examining the spectrum 

symmetry. 

The second shortcoming is the use of high sampling frequency that is equal to eight times 
the carrier frequency. This results in big storage and computational requirements. This 
shortcoming may be overcomed by the use of band-pass sampling instead of the low-pass 
sampling used the previous algorithms. It may also be overcome by the use of key features 
that may require less storage and computation requirements such as those derived from the 
complex envelope of a signal. 

The third shortcoming is that the simulations therein use sampling frequency that is 
synchronized with the carrier frequency. In practice, however, the carrier frequency is 
generated by the hostile transmitter whereas the sampling frequency is generated at the 
interception receiver. Consequently, the two frequencies are not synchronized. Therefore 
the simulations should be redone with the two frequencies being asynchronous with each 

other. 
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VII. Ccnclusions 

A survey for the most of the recent papas published in the area of mode 
introduced. Three group of algorithms -one for analog modulations only, 
modulations only and the third for bcch analog and digital modulation: 
information about the nature of a signal, are presented. Most of these re ; 
subset of the well known modulation types and a few of them consider 
modulation types. In [22] and [23], twelve analog modulated signals and si.,  

ones have been carried out to measu'e the performance of the presented alp 
between the presented recognizers in each group are presented. Also, son 
about each recognizer are summarized in Tables I-III. Finally, proposals sol 
short comings in the available refirences are presented. 
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