
Proceeding of the 1st ICEENG conference, 24-26 March, 1998. 	ISP_3 169 

MILITARY TECHNICAL COLLEGE 
CAIRO-EGYPT 

KEEN(; 9 

 

FIRST INTERNATIONAL CONF. ON 
ELECTRICAL ENGINEERING 

AN OPTIMUM PATHWISE FILTER FOR  OPTICAL 

HETERODYNE DPSK RECEIVER 

T.E. Dabbous and K.M. Hassan 

ABSTRACT  
In thiS paper we propose a. linear time invariant filter for optical heterodyne DPSK 

receiver to combat laser phase noise. Using optimal control techniques, we convert the  
filtering problem into an equivalent identification problem in which the filter parameters 
are the unknowns. Using variations arguments, we derive the necessary conditions of 
optimality on the basis of which the filter parameters can be determined. Simulation 
results show that the proposed filter is capable of minimizing the effects of phase and 
shot noise, that are superimposed on the DPSK signal, regardless the transmitted se-
quence. 
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1. INTRODUCTION  

Coherent optical communication systems offer two basic advantages over direct 
detection optical systems: (1) improving in receiver sensitivity by about 10-20 dB, and 
(2) the possibility of using frequency division multiplexing to utilize more of the enor-
mous bandwidth of a single mode fiber [1]. These systems suffer, however, from phase 
noise which is a major engineering problem that has to be solved before the use of co7  
herent optical transmission. There are two ways that can be used for solving this prob-
lem. The first is the use of advanced fabrication techniques of high performance lasers 
with narrow linewidth. In fact, distributed feedback (DFB) and distributed Bragg refrac-
tor (DBR) lasers are the basic candidates for the narrow linewidth sources. Further, the 
projected linewidth of frequency less than 100 Khz requires more technological progress 
on large area wafers [2]. The second way is to design and implement an optical receiver 
that is capable of accomodating the inevitable phase noise, with the present technology, 
to achieve high performance reception. This is the main interest of the paper. 
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For Amplitude Shift Keying (ASK) and Frequency Shift Keying (FSK), the signal 
space constellations are asymmetric. Consequently, the effect of phase noise is not very 
severe. On the other hand, phase modulation possesses a great challenge due to the fact 
that the information and noise are both embedded into the phase. The simplest phase 
modulation format is binary shift keying (PSK) which gives the bes t quantum-limited 
receiver sensitivity (about 20 photonsibit for 1 x 1 0 -9  BER using heterodyne detection 
[3]). However, due to phase noise, PSK can be implemented only with phase locked 
loops due to the time varying nature of the phase noise process H. The alternative 
approach is to convey the information in the change of phase instead of its value. This 
is the differential phase shift keying (DPSK). In this case, the effectii .e phase distortion 
is limited only to the current and previous bit intervals. Note that DPSK is less sensitive 
to phase noise than PSK. 

In this paper we propose a novel linear time invariant filter model tt I detect the DPSK 
sequences in the presence of phase and shot noises. The filter model is assumed to be 
governed by a set of linear time invariant differential equations with unknown parame-
ters. Using any of the optimization techniques available inthe literal ure, one is able to 
obtain the (optimum) filter parameters with the help of which the effect of phase and 
shot noises can he reduced. It should be noted that the filter is driven by the DPSK 
sequences with phase and shot noise being superimposed on it and hence it is clear that 
the filter parameters depend on the input (or received) signal. In other words, the pa-
rameters of the proposed filter will be adapted to the received signal. This is known as 
pathwise filtering. In fact, this approach is different from that proposed in [5] where the 
authors used a fixed parameter for all received signals. Although the filter proposed in 
[5] with fixed parameter is easier for implementation, one may expect that the filter may 
work well for some signals while it may not give satisfactory results for other sigr.als. 
That is why we have introduced the concept of pathwise filtering here to make use of the 
available information to improve the filter performance. It is worth m entioning that the 
filter proposed in this paper can be implemented by means of operation (al amplifiers and 
it can be also modified to suit for the detection of PSK signal which is proven to posses a 
better performance over the other modulation formats. The paper is organized as fol-
lows. In section 2 we formulate the (pathwise) filtering problem and present the filter 
equations. In section 3 we utilize optimal control theory to develop the necessary condi-
tions for optimal identification of filter parameters. In section 4 we propose a numerical 
scheme, which is based on the necessary conditions, for computing tilt.: (optimum) filter 
parameters along with some numerical simulations to show the effectiveness of the 
proposed filter. 
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2. Problem Formulation and Filter Equations.  

Let x(t);-T 5. t 5 T, denote the detected signal from the photo detector as shown in 
Fig. 1. Taking into consideration phase and shot noise. we assume that x(t) is given by 
[5]: 

x(t) = s(t) eis3(t)  + n (1), – T < t < T, 	 (2.1) 
where s (t) represents the modulated data, 0(t) is the combined phase noise of transmit-
ter and local oscillator lasers, and n(t) is the shot noise introduced by the detection 
process. For each period [0,1], the transmitted data s(t) may take the values +S or -S for 
any t E [0, T];' where T is the system bit period. The phase noise 0 is modeled as a 
Brownian motion with zero mean and variance 2nPt :0 5.. t T, where f3 is the sum of 
linewidths of transmitter and local oscillator [5]. The shot noise n (t) is modeled as a 
zero mean complex white Gaussian noise with variance yt .The problem is to design A 

linear time invariant filter that reduces the effects of phase and shot noise and hence one 
is able to obtain a good estimate for the transmitted data s(t); –T t _. T. This filtering 
problem was considered in [5] where the authors used delay and multiply type hetre-
doyne binary DPSK receiver, which includes two  bancipass filters, to estimate the 
transmitted signal at the end of each bit period T. For the design of these filters the 
authors used the following criterion to determine (optimally) the filters parameters 

where 

J a E 

v(t) 

S2   
v(T) – ---) ( 

Rty(t)y*(t – T)}; 	t 5 T. 

(2.2) 

(2.3) 

Here RtX 1 denotes the real part of the complex variable X . E{V} is the mathematical 
2 

expectation of the random variable v, y is the filter output, and —
s is the filter output in 

• 	2 
the absence of noise. Minimizing J, the authors obtained the filter parameters with the 
help 
of which one is able to estimate s (t) at the end of each period. Simulated results showed 
that the probability of error ( Priv(T) < ) is increased as PT increases. For the range 

0.001 5. PT 0.1,the probability of error ranges from 10 to 10 -1  for SNR= 16 dB. 
Further, for each (3T and SNR, the authors obtained the filter parameter that minimizes 
the probability of error. Simulated results showed also that the optimal parameter in-
creases with the increase of SNR and PT. 
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In this paper we propose a linear time invariant filter that is governed by a set of 
ordinary differential equations. driven by the received signal, will', unknown parameters. 
The filtering problem is then formulated as an identification prol dem in which the filter 
parameters are the unknowns. Using control theory, we develop tile necessary conditions 
of optimality on the basis of which the filter parameters can be determined. Based on 
these necessary conditions, we propose a numerical scheme for computing the filter ( 
optimal ) parameters. In this section we present the filter model and show how the 
filtering problem can be treated as a pathwise identification ;:iroblein in which the ( 
optimal ) parameters depend on the received signal x (t) . which it known to the filter. 

Filter Equations  

	

Let x(t); - 	t T, denote the received signal, and let. xR  (1) and 
xi  (t); — T 	T, 	denote the real and imaginary parts of 	the signal 
x(t). respectively. Let y(t) denote the filter output due to the input x(t); - T 	T. 
and let y R  and y I  be the corresponding real and imaginary parts of v. Define 

xi  (t) = xR (t - T); 
x2  (t) = xi  (t - T); 
x3  (t) = xR  (t); 
x4 (t) = xi  (0; 
y i (t) = yR (t 1); 
y2  (i) = y i (t -T); 

Y3(t) = YR(t); 
y 4  (t)— y i (t); 0 t T. 

Using the above defmitions, we assume that the proposed filter ;s governed by the fol- 
lowing linear (stochastic) differential equations in which the real ;..nd imaginary parts of 
the received signal are the inputs 

dt
dyi  
- = a i y i (t)+ a 2 x1 (t), 

dv1 
--= a1Y2(t) a2x2(t), dt 

dy3  
	 = a iy3(t) + a2 x1(t.)• 	 (2.5) 
dt 

dv4  
- = a i  y 4  ( t) + a2 x4 (t), 0 Lc_ t !.=: T. 
dt 

(2.4) 
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The filter parameters a l  and a, are unknown and can be determined through the 
minimization process of the following performance index 

.11(ai,a2)=atX1(yi(t)y3(t)— S2 )
2 
 + X-)(y-)2 (t) + yi(t)) t, 	(2.6) 

where 	> 0);1 5 i 5_ 2, are some arbitrary constant weights. The main reason for 
choosing the above criterion is to reduce the effect of both phase and shot noises on the 
received signal. This is done by taking into consideration the following requirements: 
(a) The multiplication of the real parts of the filter outputs at (t-T) and t ( i.e., 
yi  and y3) is close to S 2 ( multiplication of the filter outputs at (t-T) and t in the 
absence of noise). This is included in the first term of the performance index J1  . 
(b) The imaginary parts of the filter outputs at (t-T) and t are minimum. This is also 

included in the second term of J 1  . 
Tt should he noted that the criterion (2.6) assumes that, in the absence of noise, the 
transmitted data over the period [-T,T] is "1" which corresponds to (+S,+S) or (-S,-S). 
In the case where the transmitted data is "0", which corresponds to (-S,+S) or (±S,-S), 
the above criterion is modified to 

) .10{Xi(yi(t)y3(t)+ S2)2 + Xl (y2 (t)+ y4( )) 	(2.7) 

Remark 2.1  
Since the transmitted data ("0"s or "1"s), during the period [—T, T], is not known, 

one should use both of the above criteria to determine the filter optimum parameters. 
The minimum value of J I  should he determined first assuming that the symbol "1" 
has been transmitted. Then assuming that symbol "0" has been transmitted, one deter-
mine the minimum value of J 2 . If J i  < J 2  , then we choose the filter parameters that 
correspond to J 1 , otherwise we choose the filter parameters that correspond to J2 . 

In the remaining part of this section we shall reformulate the above filtering problem 
in a way that is convenient for the derivation of the necesSary conditions of optimality 
on the basis of which the filter parameters can be determined. 

Let X , x2  , .x3  , A-4  ) 	and 	Y 	(y , y 	, y 3 , y 4 ) 	and define 

/ a l  0 0 0 	•\ 0 	0 
10 

0 ' 
0 a1  0 0 a 0 0 

B 2 

0 0 a l  0 0 	0 	a., 0 
\0 0 0 a l, 0 	0 	0 a, i 
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To 0 1 o 0 0 0 0" 

0 0 0 0 0 1 0 0 
Q 0 0 0 0 Q2 a--  0 0 0 0 

0 0 0 0 0 0 0 1 ) 

A(a)Y(t) + B(a)X(t): 0 5_ t < 
at = 	 (2.8) 

Y(0) = Yo  , 
T 

J1 (a) = .1{Xl(r(t)Q1Y(t) S2)2  + A.2 Y'WQ 2Y(1..)}dt, 	(2.9) 

0 
where a. = {a l  , a, , Yo  is the initial state of the filter and A' denotes the transpose of 
the matrix A. With this preparation, we can now state the filtering problem as fellows 

Problem (P) (Filtering Problem ) 
Given the observed path (data) X(t); 0 < t T, find the paramet,:r a = {a l  , a., } so that 

J1  (a) is minimum subject to the dynamic constraint r2.8). 
In the following section we make use of variational arguments to derive the neces-

sary conditions of optimality for the problem (P) on the basis of which the filter parame- 
ters can be determined. 

3. Necessary Conditions of Optimality 

Consider the filtering problem (P) and let a.°  be its solution (i.e., J 1  (a.° 	J (a) 

for all a. E A , where .4i denotes the parameter set which is assumed to be compact and 

convex).Let a.6  -a- a°  + E (a — a ° );E E [0,1], and a, a°  EA.  Let Y°  ( t) Y(t, ° ) 

and Ye  (t) = Y(t, aE  ); 0 < t T, be the solutions of (2.8) with a. being replaced by 

a°  and 	, respectively. Let 

V(t, cc°  ,a. — a°  ) inn 	(t) Y° (t)), 	 (3.1) 
e-*0 6 

denote the (Gateaux) differential of Y at a.°  in the direction (ct — a°  ). The following 

result shows that the differential Y exists and satisfies a related ,lifferential eqration. 

Then the filter equations (2.5) and the performance index J I  can be written as follows 

dY 
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Lemma 3.1  
Consider the problem (P) and suppose the parameter set 4 is compact and convex. 

Then for each pair a., a°  € , the (Gateaux) differential Y of Y exists and satisfies the 
following differential equation 

d 	 -AY° (t)+ A°Y-( t)+173X(t); 05_ t 
dt 	 (3.2) 

?(0)= 0, 
1 

where A. lim +(a 6 	A(a°  )), denotes the (Gateaux) differential of A. 
e--40 

Proof 
The proof follows from standard computations (see for example [6.7,8] ). 	❑  

With the help of the above lemma, we can now present the necessary conditions of 
optimality for the filtering problem (P) which is the main result of this paper. 

Theorem 3.2  (Necessary Conditions of Optimality) 
Consider the problem (P) and suppose Lemma 3.1 hold. Then the optimal parameter 

a°  can be determined by the simultaneous solution of the differential equation 

dY°  
A---- = (a°  )Y°  (t) + B(a°  )X(t); 0 5_ t T, 

dt 

Y°  (0) = Yo  . 
The adjoint equation 

 

(3.3) 

--= A'(a`
,  
)qi(t) + 'A- 1((Y°(t))/ Q1 Y ° (t)— 2S 2 01 

dt 

y 0 (t ) 

 

+ [Q2 + 01Y° (t); 05, t 5_ T, 	 (3.4) 

tif(T) = 0, 
and the inequality 

(j)[AY ° (t) + r3 X ( t ) dt 0. 	 (3.5) 
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Proof 
Define 

Rac  )=.- f {ki(cYc (t)N1Y6 (t) — S 2 )2  + 	(Y6  (t))1Q2 	(t)fdt, 	43.6) 

0 
T  

J(a°)°S -r 
 

	

7.1((Y°(0)'(20"(t)- S2 )2  + ?.. -2(Y°M)'Q2V(t)}dt, 	(3.7) 

and 

Jo  (a — a°  ) = lim 1(.1(a E  ) — J(a.° )), 	 ("3.8) 
e-.0 

where To  (a --a.°  )denotes the ( Gateaux ) differential of J a 	0 i a in the direction 

(a — 	). In order that J attains its minimum at a°, it is necessary ihat 

a° ) 	\-7- '(t){ki[(Y°(t))'QIY°(t)- 2S21(Qi + (ii)Y°(t) 
0 

).2  (Q2  + (2.'2 )Y°  (t)Idt 0. 

where Y is the solution of (3.2). The inequality (3.9) can be further simplified by 
introducing the adjoint variable Lit( t), which satisfies the (backward) equation (3.4). 
Using equations (3.2), (3.4) and (3.9) and noting that 

T 

J
d 
—(Y i(t)tv(t))dt= 0, 

0 
dt 

one can easily verify that 

	

10 (a= a°  ) = tii i ( t)(AY°(t)+ BX(t))dt. 	 (3.10) 

0 
The inequality (3.5) now follows from (3.9) and (3.10). This completes the proof 	E 

4. Algorithm and Numerical Simulations  

In this section we make use of the necessary conditions devAoped in section 3 to 
propose a numerical scheme for computing the filter optimum pat 'meters a1  and a-, . 
The proposed filter and the corresponding algorithm are then tested by a numerical 
examples to illustrate the effectiveness of the filter. 

(3.9) 
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Algorithm  
The proposed algorithm may be summarized in the folloWing steps: 

1. Set n-1, and guess the filter parameters {aril  , 	}. 

2. Using Gaussian random generator, generate the phase noise 0(t), the shot 
noise 

n(t) and the process x(t); — 	t s. T. 
3. Given the data x(t ); — T t T. find xi  (t ) ;1 S i < 4 , (see equation (2.4)). 
4. Solve the differential equation (3,3) and obtain Y(n)  (t) ;0 5 t < T . 
5. Given 17(n)  (t) ;0 t 5 T, obtain ty (n) (t);0 t T, by solving (3.4). 

V ) 6. Using the inequality (3.5), obtain the gradient vector g (n) (g 	g  

7. Update the filter parameters using the following relations: 
(n+1) 	(n) 	(n) 

a1 =at +cgi 
a 2  (n+1) 	(n) 	(n) 

where c (> 0) is chosen so that J 1 (ar") , a .;n+1)  ) < .1 1 (a fl)  , a (P) ). 
K. IfJ.I (a cri±1) .a ri-1) ) _ ji(- a (n) .a(n) I where $ (> 0) is sufficiently 

small, then stop; otherwise set n=n+1 and a i f-1)  = aCi n±1)  ;1 < i < 2, and go 
to step 4. 

Numerical Simulations 
Let T=2, and 5-2, as normalized values, and let At (= 0.01) denote the integration 

step size. Using random number generator, we have generated the received data 
x(t );-2 -si t 2 , for different variances p At and y At. (see figs. 2, 5, 8, 11,14, 17, 
20). In the figs. 2, 5, 8, 11, we have taken y At-5, whereas fi At = 5, 10, 15, 20, 
receptively, and transmitted data is assumed s(t) = 2;— T 5 t 5 0, and 
s(t) = —2 ; 0 t S T , (i.e., symbol "0" being transmitted ). The real parts of the filter 
output corresponding to the values of PAt given above are depicted in figs. 6, 9, and 
12_ Note that the real and imaginary parts ofthe filter output, denoted respectively by 
:y' R (t ) and y i (t), are given by 

YR(t)=Yi(t)+y3(t), 
y i (t)=y2 (t)+y,l (t) ;-2 	2 . 
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From these figures, it is clear that the filter output y R  has a behaviour which is close to 
that of the DPSK transmitted signal and hence one can easily tell 1 hat symbol "0" has 
been transmitted. Another way for detecting the transmitted data is shown in figs 4, 7, 
10, and 13. In these figures we have used the variable v (t) which is given by 

v(t) yR (t)yR (t — T) — )7 /  (t)y i (t — T); 0<_t 5. 2, 
as a criterion for detecting the transmitted signal. If v (T) < 0, then symbol "0" has been 
transmitted otherwise symbol "1" has been transmitted. As shown in figs. 4, 7, 10, and 

i 13, the value of v (2) L"-=-' —4 = —S which indicate that symbol "0" has been transmitted. 
In figs. 14-16, we have taken (3At = 5 and y At = 20 to study the ,!ffect of shot noise. 
Again, it is clear that synibol "0" has been transmitted. From figs. 17-22 we observe. 
once again, that symbol "1" has been transmitted. From these results, it is clear that our 
proposed filter is capable of detecting the transmitted data and the effect of phase and 
shot noise has been remarkably reduced. 

5. Conclusions 

In this paper we have considered the filtering problem for DPSK optical signal. A 
linear time invariant filter has been proposed to reduce the effect of pliase and shot noise 
that are superimposed on the DPSK signal. The filter consists of four differential equa-
tions in which the received signal being its input. In other words, tin filter is driven by 
the input signal and hence the filter parameters are adapted to the ree.:ived signal. Using 
control theory approach, we have formulated the filtering problem as an equivalent 
identification problem in which the filter parameters are the unknowns. Using a suitable 
performance index (i.e., J1  or J 2  ), we have developed the neces sary conditions for 
optimal identification. Based on these necessary conditions, we have proposed an i tera-
tive scheme for determining the filter optimum parameters along with some numerical 
simulations to illustrate the effectiveness of the proposed filter. From these simulations, 
we have seen that the filter is capable of reducing the effect of phase and shot noises. In 
fact, we have seen that the filter output y R  (t) has a behavior which i; very close to that 
of the transmitted signal s (t), and hence one can easily decide for which symbol has 
been transmitted (see figs. 3,6,9,12,15,18 and 21 ). Further. we have introduced the 
variable v (t) which can also be used to decide for the symbol being transmitted. In figs. 
4,7,10,13, and 16, v (T) is close to -4.0 indicating that symbol "0" has been transmitted. 
On the other hand, in figs. 19 and 22, v (T) is close to 4.0 indicatii ig that symbol "1" 
has been transmitted. Finally, it is worth mentioning here that the proposed filter can be 
implemented using operational amplifiers and also can he easily modified to suit fcr the 
detection of PSK signal which is proven to have a better perform nice over the other 
modulation formats. 
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