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ABSTRACT 

The paper is concerned with analyzing the effect of finite wordlength on the tracking 
performance of a signed regressor algorithm when used in the adaptive identification of a time-
varying plant. Rounding quantization is assumed. Expressions of the steady state mean square 
error, steady state mean square weight deviation, and the corresponding optimum step sizes are 
derived. It is found that the mean square error, mean square weight deviation, and the optimum 
step sizes increase as the filter weight wordlength decreases. The effect of filter weight 
wordlength is found to be equivalent to an increase of the degree of nonstationarity and/or the 
noise of the plant. It is also found that the effect of filter weight quantization dominates the effect 
of input quantization. The theoretical results of the paper are validated by computer simulations. 
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I. INTRODUCTION 

Tracking analysis of the signed regressor algorithm (SRA) is available only in the infinite 
precision implementation of the adaptive filter[2,3]. In practical applications, however, finite 
wordlengths are used for the signals and adaptive filter weights. This results in quantization 
errors. Analysis of the effect of these errors on the algorithm performance is available only in the 
stationary case [5]. The present paper provides a roundoff error analysis of the tracking 
performance of the SRA. This analysis enables the derivation of design equations of the 
algorithm. 

To present the notations of the paper, consider the case of adaptive identification of an unknown 
time varying plant [1, 11] depicted in figure I. In this figure, a k  is the plant output at time k, G k  
is the vector composed of the -plant parameters, X k  is the observation vector composed of the 
input samples contributing to a k  , and bk  is the plant noise. The vector G k  is assumed randomly 
time varying. The incremer.t of G k  is denoted by D k ; i.e. 

Dk  = G„, — Gk 	 (1) 
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The adaptive filter weight vector 	k  is composed of the filter weights at time k. When the 
signed regressor algorithm is used for updating the filter weights, H k  follows the recursion [2,3] 

1-1; ,, I = II;  + p(a;  — H ki 	)sgn(Xk  ) 	, k = 1,2,3,... 	 (2) 

where p is the algorithm step size and sgn(•) is the signum function. 
The paper studies the effect of roundoff quantization of X j, , ak , and H k  on the tracking 
performance of the algorithm (2). Expressions are derived for the steady state mean square error, 
the steady state mean square weight deviation, and the values of p that minimize each of them. 

The paper is organized as follows. Section II presents a mathematical model for the quantized 
SRA and the assumptions used throughout the analysis. In Section III, the steady state mean 
square error is derived. The section also derives the step size that minimizes the mean square 
error and the corresponding minimum mean square error. Section IV is concerned with the 
derivation of the steady state mean square weight deviation and the corresponding optimum step 
size. Simulation results are provided in section V. Conclusions of the paper are given in section 
VI. 

a 
ek  

Figure 1. Adaptive Identification of a Time-Varying Plant. 

H. MATHEMATICAL MODEL OF THE QUANTIZED SRA 

The quantized SRA model is shown in figure 2. In this model. Q[.] denotes fixed point 
quantization of [•]. The primed symbols denote quantized values while the unprimed symbols 
denote the infinite precision values. The input xk  is quantized to the wordlength acceptable at 
the plant input. The same wordlength is used for the adaptive filter input. The plant output is 
quantized to the wordlength of the adaptive filter output. The difference e; between the 
quantized plant output and the quantized filter output is used to update the filter weights 
according to the quantized signed regressor algorithm 

k +I= Hk Q ,ue'k  sgn(X"k  )1 	 (3) 

Rounding quantization is assumed. It is assumed also that the saturation thresholds of the 
quamizers are properly chosen such that the saturation errors are negligible. The weight deviation 
vector is defined by 

V k  = H' k  —G k  	 (4) 
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Figure 2. Model of the Quantized SRA 
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Two performance indices are used to evaluate the tracking capability of the algorithm: the steady 
state mean square error 	= lim E{e,2 } and the steady state mean square weight deviation 

= lim El V k 
	where ek  is the difference between the plant output and the filter output, i.e. 

ek = ak - 	f  k 	 (5) 
and p 	= ; r, is the squared norm of r, . 

Throughout the analysis, the following assumptions are used 
Assumption 1: Xk  is zero mean, stationary, Gaussian with a positive definite covariance matrix. 

Assumption 2: The sequence {kr } is white, stationary, and zero mean with variance 

cr,,2  = E{bk2 } . 
Assumption 3: D k  is a stationary sequence of independent zero mean vectors. 

Assumption 4: The sequences {bk  , 	{X k  , and {Dk  } are mutually independent.k 

Assumption 5: Quantization errors are all zero mean, mutually independent, and independent of 
other signals. 
Assumptions 1-4 are typical in the context of nonstationary adaptive filtering [e.g. 2-4] while 
assumption 5 is typical in the context of finite wordlength effects [e.g. 5-10]. 

III. DERIVATION OF THE MEAN SQUARE ERROR 

rk 	mk)sgn( X'  k)—Dk 	
(6) 

 
where ink  is the error resulting from quantizing the multiplication of y and ek to the wordlength 
assigned for the filter coefficients. The saturation threshold of the quantizer is denoted by L, and 

Using (3), (4), and (1), one obtains 

Q[1-1<]sgn(X' k ) — D, 
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its number of bits is denoted hy B, in addition to:A sign bit. Then, the variance of mk  will be 
given by 

2 	E  

	

— 
12 	 (7) 

In order that mk  may be approximately independent of e;, as required by assumption 5, 
po, should exceed the least significant bit of the quantization; i.e. 

,ucrh  > 
From figure 2, The quantized estimation error e; is given by 

ek  = a; — y; 
where y k  is the quantized output of the adaptive filter given by 

Yk = QUI";  X' ;]= 11% X'  yA 	 (10) 

where yk  is the error that results from quantizing H' kl  X' k  to B, bits. In practical applications, 

each one of the N products involved in II' ki  X' k  is quantized to, say B, Bits, and the sum is 

then quantized to B, bits with B being significantly greater than B,. In such a case, 

" r2 
N  = a  2 +o  2 

The quantized plant output a;• is given by 

	

a'k  = a k  + A 	 (11) 
where 4 is the quantization error. When the plant output is quantized to B bits, The variance 
of 	equals o-‘2 . From (5), (9) - (11), one obtains 

ek = ek  + pk 	 (12) 
2 where pk  = - Yk  is a zero mean sequence with variance o-k,2 Na  + 2  a We shall use the 

natural assumption that quantization preserves the sign of the signal. Therefore 
sgrik'k  = sgn(Xk  ). Using this fact and substituting (12) in (6), one obtains 

V k+1 	k  ±(,u(ek  + Pk ) + rnk )sgn( X k ) D; 	 (13) 

From Figure 2, a k  = X' ki  Gk  bk  . Then (4) and (5) imply that 

	

ek  = bk  X' ;1/ 	 (14) 

Substituting (14) in (13), one obtains 
V,,, = Lk  — psgn(X)X',' V k  (A(b&  pk )+ mk )sgn(X k ) — D k  (15) 

Squaring (15), taking the expectation of both sides, and then using the assumptions 1-5, one 
obtains 

E{V k  _ I V kr } = E{V A V }+ ,u'Efsgn(X Jr k V k l%; X' sgri(X kl  

pE{L_ k  17 k  }E{X' k  sgn(X kl  )1— ktE{sgn(zY k  )X }E{L k  V kl  

+ E{(11(1) k  + pk )+m k )2  sgn(X k )sgn(X ki  )1+Q 

where Q= .E{Dk Dki }. Assumption 5 implies that Elsgn(Xk  )X"k  = E{sgn( X)X i  

using [2, (2.9)1, one obtains 

Elsgn(Xk)X'1A1= 
2 

,
R 

----=- 
Iva 

(16)  

. Then 

(17)  

where R A E{Xkk  X} and o-  is the variance of xk  ., Using (17) and the assumptions 2-4, (16) 

(8)  

(9)  

'oecomes 
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ElE k.,,V ik+1 1 = 	 —2 	(RE{V k l/ k }+ E{V k l/ k }R) 
7T CT, 

± ( x1 2 (0.h2 6 p2 	0_ c2
)E{Sg11(2( k )SgT4 k7 	 (18) 

+p2 E{sgn(X k  )X ' 41. E k V k'  X' k  sgn(Xkr + Q 

At steady state, ElV k,I V kr+1 1= ElV I V Ik  land then (18) yields 

(p2 (0-,,2  + 	+ crlElsgn( X k  ) sgn(26 )1 + Q + 	im(E (sg nl X, ) 	V '1  k —k 	X' k sgn(LRI  ) ) 

=11
2 	 (19) 
--

p 	
v

, 
 Ely, ,  

7z-  a,  

Squaring (14), taking the expectation of both sides, then using the assumptions 1-4, one obtains 
ai2 (k) = Et ek21 

= C7,2  E{X' ki  V k V ki  X '  k } cri,2  + 6V kl  REk 	 (20) 

where the last approximation holds under the mild assumption that the mean square input 

quantization error is small with respect to the minimum eigenvalue of R. In the case of white 

input, this condition implies that 

22H, 
L2 2 
	 « a, 	 (21) 

12 
Where B, and L, are the number of bits and saturation threshold of the input quantizer. For 

small probability of quantizer saturation, it is sufficient to choose L,=3o-,. In such a case (21) 

will be a very mild condition that may be satisfied with any Using (20), taking the trace 

of both sides of (19) and solving for 6,(00) . then the steady state mean square error is given by 

tr(Q)+ N(
/12 (Th2 + 02, 	

CT) 
,7. ( 00 ) 	crh2 

From (22), it is clear that the steady state MSE increases with 	and a2 . i.e., the mean square 

error decreases with increasing the coefficients wordlength Be . Equation (22) shows also that the 

effect of roundoff errors on the mean square error of the SRA is equivalent to an increase of the 

degree of nonstationarity of the plant and/or the plant noise .The effect of finite wordlength 

dominates (resp. is dominated by) the effects of the plant nonstationarity and the plant noise 

when tr(Q)+ Np,2  c5,2  is smaller (resp. greater ) than Na,2  + N,u2  o-2  . The minimum MSE is 

obtained at 1u = 	given by 

V2ir , I 2 
— , 	v- 1.01+ 	, 	 —1 

c  'Nur V ;Tv- 

where v is defined as 

\ 1/2 

or  
A 2 ( 

iv
ta,2 	tr(Q)) 

46h

Na  (  

+ a-2 ) 

The corresponding minimum mean square error is 

 
Na-,2 ( Na-,2  + tr(Q)i, j1+ 	 2 

4 	 — )01 rcv- 

8 ,u _ 	 (22) 
\V IT ar  

v — 

(23)  

(24)  

(25)  
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IV. MEAN SQUARE WEIGHT DEVIATION 

For small values of p, the third term on the left hand side of (19) will be small with respect to its 

right hand side. Then, (19) cart be approximated by 

SR + RS = 
2 

_71" 0; i + t 2  (0.: ± 0  . p2 ) + 0 2)p) 
(26)  p k—  k 

where S = jimE {E, V ',} and L. =lim(E{sgn(X k  )sgn(21±k  )1) . 

Using (26) with a technique similar to the one given in [4, p.2940], one can show that the steady 

state mean square weight deviation is given by 

q = — -2L  (tr(Q11 -1) + (du 2 (a2 ± Cri,2 )+ CT,2 ) tr(171-1 )) 
117r o- 

8  

From (27), one deduces that the mean square weight deviation decreases with increasing the 

coefficient wordlengths. The minimum weight deviation is obtained at p = ,u,7  given by 

tr(QR-I) 	 o-c2 
/-2,7 = 

	

(0.„2 0.p2 	) 	tr(rj?- 1) o_h- 
o 

The corresponding minimum mean square weight deviation is 

7r rirn.  = 	1k 0_62 + op2 ) tr( 	  
Itr(Q12:1 )+ o-,2  tr(1213:1 

2 

V. SIMULATION RESULTS 

Simulations are done for the case of adaptive system Identification shown in figure 2. The 

elements of the increment vector D, are zero mean, each of variance crd2  = 10'  .The number of 

filter taps N is 10.. The plant input x k  and the plant noise bk  are zero mean, Gaussian with 

variance .7,2  = 0.09 and o = 10-4 , respectively. The mean square error and mean square weight 

deviation are calculated by averaging ek2-  and 1V4,1 respectively over 5000 iterations in the 

steady state and then averaging over 50 independent runs. The plant input quantizer number of 

bits B, and saturation threshold L, are chosen to be 8 and 1, respectively. The filter weights 

saturation threshold L. is 2. The multiplication X',1  H' „ is performed with an accumulator with 

+ 13, bits and then the accumulator output is quantized to B, bits. 

Simulation and analytical results of the MSE versus p are shown in figure 3. Simulation and 

analytical results of the MSWD for p = 2-4  are shown in table I. Both figure 3 and table I show 

a good match between simulation and analytical results. This validates the analysis presented in 

the paper. 

(27)  

(28)  

(29)  

VI. CONCLUSIONS 

The effect of finite wordlength on the tracking performance of adaptive filters equipped with the 

SRA is studied in the context of adaptive plant identification. Expressions of the mean square 
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Figure 3. Simulation and analytical results of the MSE 

Table I. Simulation and analytical results of the MSWD 
Wordlength MSWD (Theo MSWD Simulation 

B, = 9 2.2 x 10-3  3.36 x 10-3  
B, = 10 8.93 x 10-4  1.1 x 10-3  
B, = 11 5.7 x 10-4  6.1 x 10-4  
B, = 12 4.91 x 10-4  5.2 x 10-  

Infinite Precision 4.65 x 10-4  4.8 x 10 

error and the mean square weight deviation are derived and validated by compteier simulations.. It 
is found that both the mean square error and the mean square weight deviation decrease 'with 
increasing the filter weight wordlengths. The effect of quantization is found to be equivalent to 
an increase of the mean square fluctuation of the plant parameters and/or the plant nois;... It is 
also found that the effect of input quantization on the algorithm performance is negligibly small 
for commonly used input wordlengths. A condition at which the effect of plant nonstationarity 
and plant noise dominate the effect of finite wordlength is derived. The derived expressions are 
in a good agreement with simulation results. These expressions will serve as useful design tools 
for quantized adaptive filters based on the signed regressor algorithm. 
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