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ABSTRACT 

The transient stability evaluation studies were mainly related to the following factors: 
1) the construction parameters of the network and operating conditions of the power 
system. 2) the fault type and location. 3) the fault clearing time. 

Application of artificial neural networks to power systems has resulted in an overall 
improvement of solutions in many areas. This paper presents a multi-layer 
feedforward perceptron type neural network (NN) for transient stability evaluation. 
Numerical integration and Lyapunov direct method are used to obtain the training set 
of the NN. The neural network architecture adopted as well as the selection of input 
features for training the neural networks is described: The approach is tested on a 
3-generator power system using a stochastic backpropagation algorithm. 

The capabilities of the developed technique is tested through computer simulation for 
a typical case study. By comparison with the conventional methods, the proposed 
method can quickly estimate the transient stability of the power system at different 
fault locations, clearing times and load levels of the system. The results demonstrate 
that this approach has an excellent classification performance and simple for on-line 
application. 
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NOMENCLATURE 
E 	error of a neuron in a neural network 
E.D total energy deviation w.r.lpost fault equilibrium point, at the instant of fault clearing 
f(I) activation function 
I, 	net weighted input received by neuron i from a total of n neurons in the network 
K.E generator kinetic energy deviation at the instant of fault clearing 
P. generator mechanical input power 
T 	threshold value 
wy weight on the connection directed from neuron j to neuron i . 

incoming signal from the j th neuron 
y, 	output of a neural network 

learning constant of a neural network 
dwi;  change in the weight of a neural network 

momentum constant of a neural network 

1. INTRODUCTION 
Transient stability evaluation of a power system pursues a two fold objective : first to 
appraise the system's capability to withstand major contingencies, and second to 
suggest remedial actions whenever needed. The first objective is the concern of 
analysis, the second is a matter of control . 

To assess transient stability, multitude of techniques [1-9] and methods are available 
encompassing traditional time domain state numerical integration, Lyapunov based 
techniques, probabilistic methods, pattern recognition and recently neural networks. 

The approach presented in this paper is based on backpropagation trained neural 
networks. The major benefit of neural networks is that, once trained, it can quickly 
classify a new pattern as belonging to a known predefined class of patterns. Using 
neural networks, the transient stability evaluation is a classification problem with two 
classes. Compared with recent approaches, the presented method is very simple for 
on-line assessment and has an excellent classification performance. 

2. ARTIFICIAL NEURAL NETWORKS 
A neural network consists of a number of very simple and highly interconnected processors 
called neurons. The neurons are connected by a large number of weighted links, over which 
signals can pass. 

A neuron in a neural network receives input stimuli along its input connections and trans' ,rtes 
those stimuli into an output response, which is 'transmitted along the neuron's Jutput 
connection. Firstly, the neuron computes the net weighted input (I,) it is receiving along its 
input connections as: 

Ew4ixj 
j=1  (1) 
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where, 1, is the net weighted input received by neuron i from a total of n neurons in the 
network, xi  is the incoming signal from the j th neuron and wy  is the weight on the connection 
directed from neuron j to neuron i . 

The second step is converting the net input to an activation level for the neuron. The activation 
is expressed by a sigmoid function as : 

(2) 
1 + e 

This function has the useful property that its derivative is exceptionally easy to compute: 

df(1)/c1I = f(I)(1-f(I)) 	 (3) 

The final step is to convert the neuron's activation level to an output signal as: 

Yi=tf(I) 

y, = { 0 , otherwise 	 (4) 

where T is the threshold value. 

A well known supervised training algorithm is the backpropagation algorithm, which 
is used in this paper. The backpropagation algorithm is basically a generalization of 
the Least Mean Square (LMS) rule or the generalized delta rule algorithm described 
in reference [10]. 

A backpropagation network operates in a two-step sequence during training. First, an input 
pattern is presented to the network's input layer. The resulting activity flows through the 
network from layer to layer until the network's response is generated at the output layer. In the 
second step, the network's output is compared to the desired output for that particular input 
pattern. If it is not correct, an error is generated, which is passed or propagated backward 
through the network - from the output layer back to the input layer, with the weights on the 
intra-layer connections being modified as the error backpropagates. The generalized delta rule 
specifies the change in a given connection as: 

AWY .E.f(I) 
	

(5) 

E is the error for this neuron, ( is the learning constant, a parameter between 0.0 and 1.0, and 
RI) is the input to the neuron. For reasons of mathematical stability, the net weighted error in 
each middle-layer neuron is multiplied by the derivative of the activation function of the 
middle-layer neuron. The final form of the error computation is : 

actual 1 
J' 	- J 

d  (  truklle )  L Ew4 eutPui  
i 

In these expressions, the superscripts "output" and "middle" designate the layer of the neuron 
that is modifying the weights on its incoming connections. Neuron j is an arbitrary neuron in 
the output layer; neuron i is an arbitrary neuron in the middle layer. 

Adding a momentum term to the gen.eralized delta rule is an attempt to avoid the lengthy 
training time of the neural network. The change is redefined as: 

f( 1 ) = 	
1 

(6)  

(7)  
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dwy = E. xi  + y. Awri"s (8) 

The parameter y is the momentum constant and has a value between 0.0 and 1.0. 

3. APPLICATION OF NEURAL NETWORKS TO TRANSIENT 
STABILITY 

In this section, the method and the procedures for application of neural networks to transient 
stability evaluation are described. The example system under study is a nine bus power system 
that has three generators and three loads. A one line diagram for the system is shown in Fig. 1, 
and the system characteristics are given in [7]. 

To develop a neura network for a classification problem, it is necessary to: 

(1) choose a network architecture; 

(ii) choose a training algorithm; 

(iii) apply the algorithm to a set of training data until parameter convergence is achieved; 

(iv) supply the trained network with on-line data to perform the classification required. 

Fig. 1. Power system under study 

3.1 Generation of Samples 
It is assumed that the loads are randomly distributed and that they have a normal distribution 
shape with the following means: 

[ PA PB , Pc ] 	[ 1.25 , 0.9 , 1.01 p.u. 

For load flow analysis, Bus 1 is taken as the swing bus and Buses 2 and 3 are voltage 
controlled buses with voltage magnitude of 1.025 p.u. For each load sample, the loading of the 
generators is determined by economical dispatch of the total load among generators, followed 
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by a load flow analysis. A three phase short circuit is assumed to occur at one line very close to 
one of the buses of the system and the fault is removed by tripping out the faulted line. The 
Runge-Kutta numerical integration approach is applied to find the class of each sample. A 
sample is classified as unstable if the rotor angle of any of the generators reaches 180 degrees 
within one second [7], and it is given a stability index of 0, otherwise the sample is classified as 
stable, and it is given a stability index of 1. 

Generation of samples is performed by changing the fault location, loading conditions of the 
system prior to the occurrence of the fault and the clearing time. A group of samples is 
generated at six different fault locations with two different load levels ( 1.5 , 0.5 ) p.u. for each 
of the three loads of the power network under study and three different clearing times (100, 
150, 200) ms. resulting in 144 samples. 

In order to improve the classification performance, a normalization process is performed to all 
the variables of the training set (and the test set).  

3.2 Selection of Features 
There are three important quantities which have significant indication of stability and 
as a result their pattern would dominate the pattern of stable and unstable classes, 

1) The loading of generators (Pm) , the higher the loading of the generators, the 
higher the risk of instability. 

2) The kinetic energy deviation of each generator (K.E = 0.5 M (1)2) at the time that 
the fault is cleared. These variables carry some information about the energy distance 
of generators and present an indication of the path of rotor angles. 

3) The total energy deviation (E.D) with respect to the post fault equilibrium point, 
which is directly related to stability. 

Taking into consideration that the loads are economically dispatched among the 
generators, then Prni  , P.2  , , P. would have the same information as I P. because 
all P., are linearly dependent, therefore the chosen features are: 

E Pm  , 0.5 M (.012  , 0.5 M o 2  , 0.5 M (1332  and E.D 
i=1 

"P." is a direct outcome of the load flow results. The other features are determined 
from a transient stability program using the second-order model of the machine. Full 
details of the derivation of the energy deviation using Lyapunov direct method is 
mentioned in [5]. 

3.3 Description of the Neural NetworksUsed 
Two neural networks are used in this paper. The first NN contains three layers (1 input layer, 1 
hidden layer and 1 output layer) and the second NN contains four layers (1 input layer, 2 
hidden layers and 1 output layer). A schematic diagram for the two neural networks is shown 
in Fig.2. 

1. The input layer contains five neurons loaded with the five input features. 
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2. The middle (hidden) layer : the number of neurons in this layer is chosen to be sufficient to 
represent the complex relationships required. Generally, the more complex the relationship, 
the greater the number of training data sets and the hidden layer neurons. 

3. The output layer contains only one neuron. 

Fig. 2 

It is supposed to have an output value from the neural network between 0 and 1. Normally, the 
sample can be classified as unstable if its output value from the neural network is less than 0.5 
and stable if the value is greater than 0.5.  

3.4 Validity of Classification Using the Backpropagation Algorithm 

It is allowed to train the neural networks until the least square error is reduced to 1*10-3, then 
the weights of the neural networks are determined, and the transient stability is then predicted 
using the trained neural networks. 

There is an important factor which measures the degree of success of the classification process, 
which is, the number of misclassified samples among the total number of samples in the 
training set. A misclassified sample is a stable sample classified as unstable, or an unstable 
sample classified as stable. 

Using the standard backpropagation algorithm in classification, with a learning constant = 
0.2 and momentum constant y = 0.9, (the most commonly used values) , some unacceptable 
results are obtained. It is noticed that the output value from the neural network for all the 
samples of the training set ranged from 0.9 to 1. This might occur due to the sequence of the 
samplers. It is concluded that care must be taken with the order in which the patterns are 
presented. For example, when using the same sequence repeatedly the network may become 
focused on the first few patterns. This problem can be overcome by using a permuted training 
method. The program is therefore modified in order to randomize the order of the samples in 
the training process. This operation is called the stochastic training approach [11]. 

Table 1. shows the effect of varying the number of the neurons in the hidden layers on the 
performance of the classification process using the stochastic backpropagation algorithm. In 
the 	table, (u) is an unstable sample misclassified as stable and (s) is a stable sample 
misclassified as unstable. 
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Table 1. Effect of varying the number of neurons in the hidden layers on the classification 

performance of the training set using two different neural network constructions 

Neural Network Chosen Number of neurons in 
the hidden layer 

Number of misclassified 
samples 

N.N.1 15 1(u) 2(s) 
20 ---- 1(s) 
25 1(u) 2(s) 
30 1(u) 1(s) 

N N.2 Layer 1 Layer 2 
5 5 1(u) 2(s) 
5 10 1(u) 1(s) 
10 5 1(u) 1(s) 
10 10 ---- 1(s) 

3.5 Performance Testing 

The last step in the neural network approach is the generalization process by which a complete 
verification of the capabilities of the neural network in predicting the class of unknown samples 
is performed. The generalization ability is best stated in probabilistic terms as the probability of 
correct classification. It can serve as an index of satisfactory performance of the classification 
in unknown situations. This step is conducted by testing the chosen neural network using an 
adequate test set. The samples of the test set should cover a wide spectrum of operating 
conditions and contingencies that the machine under study may be subjected to. The generation 
of samples for the test set is performed in a similar way to the training set. The test set is 
generated at six fault locations with three different load levels ( 1.6 , 1.0 , 0.4 ) p.u. for each of 
the three loads and two different clearing times (125 , 175) ms. This produces 324 samples. 

The prediction of the stability of each sample is obtained by running the chosen neural network 
for each sample of the test set and obtaining its output value. If the output value of the sample 
is less than 0.5 (as a threshold), it will be considered as unstable, otherwise, it will be 
considered as stable. Table 2. shows the results of the correct classification percentages for 
some selected neural networks used. The correct classification percentage is defined as: 

[1-(total number of misclassified samples / total number of samples in the test set)] * 100. 

Table 2. Results of testing selected neural networks using the test set 

Neural 
Network 
Chosen 

Number of neurons 
in the hidden layer 

Number of 
misclassified 

samples 

correct 
classification 

Vi• 

N.N.1 20 3 99.1 

30 4 98.8 

N N.2 Layer 1 Layer 2 
5 10 4 98.8 

10 5 4 98.8 

10 10 3 99.1 
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4. CONCLUSIONS 

• The successful identification of stable and unstable classes is significantly dependent on the 
chosen primary variables. For example, voltage magnitudes usually vary in a narrow 1• .and 
near rated values and are unlikely to be sufficiently discriminatory. Also, voltage angle ,s are 
not normally available in actual systems. So, the primary variables should asse ss the 
properties of each class and should fulfill discrimination, reliability and independence;.  • The significant reduction in misclassification error demonstrates that the implicit 
assumption of other researchers regarding the sufficiency of steady state var',ables for 
presentation of stable and unstable classes is unjustified. This means that selecti on of only 
steady state variables as input features would result in overlapping of stable P.nd unstable 
classes and consequently some level of error. This error cannot be reclux•d with any 
refinement in the process of feature extraction. 

• The introduction of transient variables (K.E and E.D) as input features guarantees a low 
error which is acceptable from a practical point of view [12]. Since transient variables, are 
closely related to the phenomenon of stability, it is expected that the; misclassification error 
would not change significantly with the size of the system. 

• The number of inputs and outputs of the neurons of the neural 'network are related to the 
training and test (target) set. The optimum number of hidden neurons depends on the type 
of problem and it directly affects the prediction accuracy. In 'general, the number should be 
chosen to be just sufficient to represent the complex relationship required. 

• The stochastic backpropagation algorithm gives acceptable results especially with an 
appropriate number of neurons in the hidden layer. Although an increased number of 
middle layer neurons performs well as a result of The higher dimensionality of the error 
space, it appears that there is some upper limit on the number of hidden neurons which, 
when exceeded, results in the system becoming t7apped in a local minima. 
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