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ABSTRACT 

In this paper an algorithm for data security within computer networks is introduced. 
The algorithm is based on a public key cipher system and Diophantine equations. In 
order to reduce the possibility of message length prediction, the algorithm is improved 
by using dummy bits technique. Moreover, some mathematical rules are applied to 
limit the length of the ciphering key. For the problem of truncation in floating point 
type representation of numbers, a proposed solution for a very long integer type 
representation is introduced. 
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1. INTRODUCTION 

Public key cryptographic systems allow two users to communicate securely over an 
insecure channel without any prearrangement. Cryptographic systems which allow 
this type of communication are asymmetric in the sense that the sender and the 
receiver have different keys, one of which is computationally infeasible to derive 
from the other. These systems separate enciphering and deciphering capabilities and 
privacy is achieved without keeping the enciphering key secret, because it has no 
longer used for deciphering. Hence the enciphering key is published in addition to the 
enciphering and deciphering algorithms without compromising the security of the 
system, [1]. 

* Ass. Prof., Computer Dep., ** Chairman of Computer Dep., *** Ph.D. Candidate, 
Computer Dep. Military Technical College, Cairo, Egypt. 



Proceeding of the 1St  ICEENG conference, 24-26 March, 1998. 	FCT7314 I 

A number of public key cryptosystems have been proposed in [2,3,4]. These systems 
include: RSA; Merkle-Hellman Knapsack, McEliece, ElGamal, Chor-Rivest, and Elliptic 
Curve. These systems can be classified into two categories. One is based on hard number 
theoretic problems such as factoring, taking discrete logarithms. etc., while the other is related 
to NP-complete problems such as 0/1 knapsack and Diophantine equation problem [5]. Thus, 
the introduced cipher scheme is related to NP-complete problems, which means that, no 
known polynomial-time algorithm can solve these problems [2]. 

The realized algorithm achieves the following features: 
• It is a public key cipher system, so it is suitable for networks environment. 
• Keys can be easily generated. 
• Encryption and decryption operations are relatively simple. In brief, to encrypt a message 
the sender is required to conduct a vector product of the message being sent and the 
enciphering key. On the other hand, the receiver can easily decrypt it by conducting several 
multiplication operations and modulus operations. 
From the viewpoint of computation time, this algorithm is efficient because, it requires n 

multiplication operations and n-1 addition operations for encryption, and n multiplication 
operations and n modulus operation for decryption. 

While implementing the algorithm, it was found that, it will be more interesting to leave the 
length of the message up to the user and don't be arrested to the condition [5], m = n x b, 
where, m is the length of the message, n is the number of the pairs used to generate the key, 
and b is the number of bits in each submessage. Thus this condition of the length of the binary 
message should be n*b bits, which could be considered as a disadvantage of this algorithm. 
Therefore we have tried to release the algorithm from this disadvantage by using the dummy 
bits method. Because of the limitation of the computer representation of numbers, it was 
important to put down some conditions to guarantee that the computations are within the 
allowed range. Finally, this paper is organized as follows: The underlying mathematics of the 
used algorithm is presented in Section II. The dummy bits method is described in Section III. 
Section IV shows some mathematical rules used to implement this algorithm. Finally, 
conclusions are presented in Section V. 

II. THE UNDERLYING MATHEMATICS OF THE USED ALGORITHM 

This section describes the mathematics on which the cryptosystem is based. Let w be some 
positive integer and the domain D be a set of positive integers in the range[0,w], and w=2b-1, 
where b is some positive integer. So w will be the maximum decimal number which 
represents the binary message with length b bits. 

Assume that a sending message M with length n*b bits is broken up into n pieces of 
submessages, namely mi,m2,...,mn, each of them with length b . bits, and each one can be 
represented by a decimal number m, in the domain D. 

Suppose that n pairs of integers (qi ,k,), (q2,k2), ...,(q.,k„) are chosen according to the 
following conditions: 
1) q,'s are pairwise relative primes; i.e., gcd(q„q1)=1, for i#j. 
2) k,> w 	for i=1,2,...,n. 
3) q, > k,w (q, mod k,), and q, mod k,#0, for i=1,2,..,n. 
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These n integer pairs (q„k,)'s will be kept secret and used to decrypt messages. For 
convenience, the above three conditions are named as the DK-Conditions and they will be 
used as deciphering keys,[5]. Note that for the generation of pairwise relatively primes, one 
can consult, [6]. Furthermore, the following numbers are computed. 
First, compute R,--q; mod k, and compute P,'s such that the following two conditions are 
satisfied: 
1)P, mod q, =R,, and 
2)Pi mod cb=0 if i*.j. 
Since q,'s are pairwise relatively primes, one solution for P,'s satisfying these two conditions 
is that P,=Q;b, with Q, = Ho, qj  , and b, is chosen such that Q,b, mod q, = R,. 
Since Q, and q, are relatively prime, P,'s can be obtained by using the extended Euclid's 
algorithm, [2]. 
Secondly, compute N1= rq, /(k, R;)1, for i=1,2,...,n. 
Finally compute S, = P, N, mod Q, where 

Q = n q, , for i=1,2,...,n. 	 (1) 
That is, we have a vector S —(s1,s2,...,s,,) with each component computed as above. After this, 
S can be used as the deciphering key for encryption messages. By conducting a vector product 
between M =( m1 ,m2 ,...,m„) and S =(si,s2,...,s,,); i.e. 

C= E(S,M)= S*M = f,m,s, 	 (2)• 
a message M is transformed to its ciphertext C, where * denotes the vector product operation. 
Conversely, the ith  component m, in M can be revealed by the following operation: 

m,=D((q„k,),C)4.k,C/q1i mod k1, for i=1,2,...,n. 	(3) 
For more details about the proof, one can consult [5]. 
The system constitute mainly three algorithms which described below. 

Algorithm 1- Key Generating for Each User U:  

step 1. Pick n pairs of positive integers ( qi ,k1), (q2,k2),...,and (q,,„kr,) such that the DK-
conditions are satisfied. 

step 2. Compute R,=q, mod k, for i=1,2,...,n. 
Compute Q, = 	q, 
and N,= 	/(k, R1)1 , for i=1,2,...,n, and 
compute Q = r[ q; , for i=1,2,...,n. 

step 3. Compute b,'s such that Q, b, mod ej, = R, , for i=1,2,...,n. 
step 4. Compute P, = Q, b, and S, = P, N, mod Q, for i=1,2,...,n. 
step 5. Publish the encryption key Pkt,(s1,s2,...,sn) for user U. 
step 6. Keep the private decryption key Pr„=((q1,10,(q2,k2),...,(cin,kn)) in secret. 
step 7. Keep P, ,Q, ,b, ,N, , and Q in secret or erase them. 

Algorithm 2- Encryption Procedure for Sender A:  

step 1. Encrypt M = ( ml ,m2 ,...,m„) by C = E(S,M) = S * M. 
step 2. Send out the integer C as the ciphertext of message M. 
step 3. Exit. 
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AlEorithm 3- Decryption Procedure for Receiver B:  

step 1. Compute the ith  component m, of message M by computing 
m, = D((q„k,),C)= LkiC/q,i mod k,, for i=1,2,...,n. 

step 2. Exit. 

III. THE DUMMY BITS METHOD 

The idea behind using the dummy bits method was the need to break the constraint of the 
length of the message which used in [5]. It was necessary to use a message of length equal to 
a multiple of (n*b). For example, assume n=3 and b=2 then the used message must be of 
length equal to 6*k, where k is a positive integer, representing the r.iumber of times the 
encryption process will last. 

If the message was of length m=n*b+I. I=1,2,...,(n*b)-1, there vvill be I bits from the 
message will not be used within the encryption procedure. 	illustrates clearly this 
problem. 

Fig.!. Encryption and decryption when m>n*b. 

Assume that n=3, b=2, qi=37, q2=38, q3=39, 1(1=4, k2=4, and k3=4, then R1=1, R2=2, R3=3 
and Q1=1482, Q2-1443, Q3=1406, and Q=54834, N1=10, N2=5, N3=4, and 121=19, b2=36, 
b3=21, and P1=28158, P2=51948, P3=29526 and finally, S1=7410, S2=40404, S3=8436. Now if 
the binary message was M=10110101, then C=144468 and it will be seen that only the first 6 
bits (101101) can be recovered in the decryption process. 
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Dummy bits method depends on testing the length of the message. First of all, the length must 
be greater than n*b, otherwise, it will be meaningless. After the test, if the length was of 
multiple of n*b then there is no problem, else a number of zeros must be added to the end of 
the binary message to satisfy the condition. These dummy bits will not affect the work of the 
encryption procedure since, it will add zeros to the cipher text C. On the other hand, the 
decryption procedure will have again the same binary message and these dummy bits will be 
eliminated through the conversion process of the resulted binary value to the plaintext or the 
text_message. Fig.2, shows the method and the effect of its use. 

The binary message (n*b+i) bits 

b 	b 	b 	I 	(n* b- i) 
Test & Dummy bits Dummy 

The Key 	S 
mi 	m2 	mn 	. 

Encryption 	 SI 	S2 	Sn  

C (ciphertext) 
Decryption 

The binary message 
with dummy bits 

Binary Message 00...00 

Convert to Text 

Text Message 

Fig.2. Dummy bits concept. 

For instance, assume that n 	5, b 3, qt 57, q2-65, q3-73, q4-89, q5-97, 	k1-8, k2-8, and k3=8, 
k4=8, k5=8 then, S1=1.925288e+09, S2=1.724252e+09, S3=9.275727e+08, S4=5.771723e+08, 
S5=2.142353e+09. If the message to encrypt was (egypt) then the binary length is 40 bits and 
the added bits are 5, M = 011001010110011101111001011100000111010000000, then 
C1=3.488952e+10, C2=3.101188e+10, C3=1.39249e+10 and it will be seen clearly that the 
result message from the decryption process was (egypt). 
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IV. MAXIMUM NUMBER OF PAIRS COMPUTATION LIMITS 

Referring to the algorithm in [5], and by using some mathematical rules, the suggested ranges 
for each parameter within the algorithm, and the most appropriate values for each of n and b 
were determined. 
Using the third condition, qi>k,w(q, mod k;), it is seen that, 1 < q, mod lc, 

With qi mod k, = ki-1 we have, 
> * (k,-1)* w 

Max qi/w > Max lc12—k, 
assume that Max q,/ w = R then, 

k,?-k;-R=0 
1-I-V1+ 4R Max lc, < 	 

2 
And when qi mod lc; =1 then 

qi > ki* w*1 and Max k, < R. 
From the key generating procedure we can notice that 
• 1 R., = qi mod k, ki -1 
• N, =1-  cb /kail 

Max N, Max / Min k,*Min 12.,1 = [-Max q, / (w +1)1 
n 

• Q = II qi  then Max Q = maximum value allowed. 
i=1 

with the used type, i.e., qi's with type integer, then Max Q =MaxINT =32767. 
• Qibi mod ch = R, 

p, = Qb; then 	 b, qi 

Some selected pairs of (q,,ki) satisfy the DK-conditions but some of the calculated bi's are 
greater than the corresponding cb's. For example, assume that b=6, n=3 and the (qi,ki)'s = 
((304291,64), (304391,65), (304491,65)), so , the calculated bi's =(431652,41732, 77021). It 
is seen that b1 > qi, and we have wrong results with these pairs. And by noticing all the 
examples with right results it is seen that, all N's must satisfy the condition bi 	Thus, we 
suggest adding this condition to the DK-conditions, and make it a primary condition for 
selecting the pairs of (qi,ki). 
• Si=1\1,13, mod Q, MP; _5 Max allowed value. 

P,,N, 5 SQRT(Max allowed value). 
From the encryption procedure we can see that 

C=misi m2s2+...+mnsn  ,we have Max m = w, and 
Max E s;  = n * Max Si, then 

Max C = w * n * Max Si. 
Where Max C must satisfy the equation in decryption procedure 

= L Clci/qi  J mod kJ, and Max C * Max lc;  = maximum allowed value. 
Selecting appropriate values for qi's can control these conditions. 
• Max Q can determine precisely the Max. number of n. 
• b determine the beginning of the ranges for each of qi  and ki. 
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For example, assume that the used type for q and k are real(Max value 1.7e+38), use b =2, so 
w =2b-1 =3. After a little work and with R k,-1, you will have 
q, e [ 37 ÷ 1.08222e + 18] 
k, E [ 4 ÷ 6.00618e + 08] 
N, E [w =3 ÷ 2.70555e + 17] 
b, < q, 
s, 4.80858e + 15 
C < 1.44257e + 17 
n < 9. 

With 114= 1, you will have, 
q, ?_ 13, and 
n 5. 10. 

When b=2 and n=10 the selected pairs of (q„ki) are (13,4) (17,4) (21,4) (29,4) (37,4) (38,4) 
(41,4) (25,4) (43,4) (47,4). 

After we have determined the maximum n, which was 10, and by using the same steps with 
different b's we want to select the appropriate value of b. 
Table 1, shows maximum number of bits in each encryption step (n*b) against b and Max n. 

um n*b • ______ 
b Max n n*b 
2 10 20 
3 7 21 
4 6 24 
5 4 20 
6 3 18 
7 3 21 
8 3 24 
9 2 18 

From the above table it is seen that the maximum n*b which we can take is 24 bits, three 
character each time. The problem that was found with floating point types is the truncation 
after a determined number of digits. So the result of 24 bits in each encryption step is not 
practical from view point of security. Only 224  combination, if each one need 1 ilsec to find its 
corresponding ciphertext then after 16.7 sec, the intruder can find the message immediately. 
This problem will affect the decryption process even of the big range of representation with 
the floating point types. 

To solve such a problem it was necessary to build a new type with its own declaration, 
definition and operation. For example, by using CLASS structure in C++,[7] one can build 
these appropriate very_ _long integers types. Here is a simple example about this kind of 
solution. 
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class vlong 
{ 

private: 
unsigned char data[N]; 

public: 
vlong ( ) 
{ for (int i=0; i <N; ++i ) data[i]=` \O'; ) 

}; 
It is seen that you can use N bytes to build this new type; Vlong,where N could be; chosen 
according user requirments. In our application the constructor, vlong ( ), is initialized the 
Vlong type with zeros in the beginning. 
By using overloading operations on the needed operators for our algorithm and by noticing the 
above conditions, one can control his work precisely. In the following we present operations 
on some operators. 
First for the addition process: 
If we have two Vlong variables such as vl and v2 then the addition process will be performed 
according to the following for loop: 
• for ( Counter = 0; Counter < N; ++ Counter ) 

{ 
Temp = vl [Counter] + v2[Counter]; 
Res = Result[Counter] + Temp%256; 
if (Res > 255) 

{ 
Result[Counter] = Res % 256; 
Result[Counter+1]= Res / 256; 

} 
else 

Result[Counter] += Temp % 256; 

if (Temp > 255) 
Result[Counter+1] += Temp / 256; 

} 

Second, the subtraction process: 
If we have two Vlong variables such as vl and v2 then the subtraction process will be 
performed according to the following steps: 
• if ( vl < v2) then Error (NoSubtract); 

• for ( Counter = 0; Counter < N; ++ Counter ) 
{ 
if (v1[Counter ] < v2[ Counter ]) 

{ 
if (v1 [Counter ] !=0) 
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Temp = vl [Counter ]+256; 
Result[Counter ]= Temp - v2[Counter ]; 
if (v1 [Counter +1]= = 0) 

{ 
for (s= Counter +1; v 1 [s]= = 0 && 	s++); 

vl[s]-=1; 
for (k= s-1; k>= Counter +1; --k) 

v 1 [k]=255; 
} 

else 
v1 [Counter +1] -= 1; 

} 
else 
{ 
for (s = Counter ; vl[s]= =0 && s<N ; s++); 

v 1 [s]-=1; 
for ( k= s-1; k>i ; --k) 

vl[k]=255; 
Temp = vl [Counter ] +256 ; 
Result[Counter ]= Temp - v2[Counter ]; 
} 

} 
else 

Result[Counter ]= vl [Counter ]-v2[Counter 
Temp=0; 
} 

Third for the multiplication process: 
If we have two Vlong variables such as v 1 arid v2 then the multiplication process will be 
performed according to the following two nested loops: 

• for ( k=0 ; k < v 1.1ength() ; ++k) 

Carry = Zero; 
for ( m=0 ; m < v2.1ength() ; ++m) 

{ 
Temp = vl[k] * v2[m]; 
Temp += Carry [rn] ; 
Carry[m+1]= Te;mp / 256;  
Num = Result[tn + 	+ Temp%256; 

if (NUM > 255 ), 
{ 
aeStilt[in t Shift+1 ] += Num / 256; 
Result[r l  + Shift] = Num % 256; 
} 

else 
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Result[m + Shift] = Num; 
} 
Result[m + Shift] += Carry[m]; 
Shift++; 

Finely for the division process: 
• ifx1 =0 then q=0,r=0 
• if x2 = 0 then Error ( Division by Zero) 
• if xl a then q = 1, r= 0 
• if xl <x2 then q = 0 , r = xl 
• if xl >x2 then 

1. Counter =1; 
2. Temp = Counter * x2; 
3. if (Temp x 1) then { Result = Counter 
4. else { Counter = Counter + 1; go to step 

While for other operations and functions (e.g., / , 
functions: 

-1; Reminder =x1 - Result * x2; Stop;} 

, floor, ceil) we use the following 

1- The operator / : 	
Vlong Jperator / (Vlong& xl, Vlong& x2) 
{ 
Vlong q , r; 
division (x 1 ,x2,q,r); 
return q; 

2- The operator % :  
Vlong operator % (Vlong& xl, Vlong& x2) 

Vlong q , r; 
division (xl,x2,q,r); 
return r; 
} 

3- The function floor :  
Vlong floor (Vlong& xl, Vlong& x2) 
{ 
Vlong q , r; 
division (xl,x2,q,r); 
return q; 
} 

4- The function ceil:  
Vlong ceil (Vlong& xl, Vlong& x2) 

Vlong q , r; 
division (x 1 ,x2,q,r); 
if (r = = 0) 
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return q; 
else 

return q+1; 
} 

As in the above example, one can redefine the needed operators to implement the suggested 
algorithm. When N is equal to 50, for example, then the Vlong type is an array of 50 bytes, so 
that the maximum allowed value is 2400  and when b=2 then w=2b-1=3. k, >w then MM k, = 4. 
Fror.n qi >k, w 12; then Min q, > 12. 

-.400 Kax Q = maximum 	 = allowed value for the used Vlong type z = 2.58225e+120. 
So, when b=2 and with Min qi =13, we can conclude that n L<_ 100. This means that, Max 
(n*b)=200 bit —25 character in each encryption step. 
With this new Vlong_integer type we have: 
• Big range for all of ql 's and ki's is achieved. 
• As the number of encrypted bits in each step is increased, the total time needed for 
encryption of the whole message will be reduced, and so, the speed of the encryption process 

will increase. 
• If an exhausted search is made to know the message from the public values C , n, S. It will 

take 5.1046  years to predict it. 

V. CONCLUSIONS AND SUGGESTIONS 

In this paper an improved algorithm for data security within computer networks is introduced. 
This improved algorithm achieves thc,. following features: 
• It is suitable for networks environment. 
• Keys can be easily generated. 
• Encryption and decryption e,perations are relatively simple. 
• By using the dummy bits method, the length of the binary message becomes free to the user 

and is not restricted by t.ne condition m = n*b. 
• Due to the limitation of the computer representation of numbers, some important 

conditions are put to guarantee that the computations are within the allowed range. 
• The selected pairs axe guaranteed to give right results by introducing the new constraint 

b, < q,. 
• By using the suggested Vlong type, we can notice that: 

- Big range for all of q,'s and k,'s is achieved. 
- As the number of encrypted bits in each step is increased, the total time needed for 
encryption of the whole message will be reduced, and so, the speed of the 
encryption process will increase. 

If an exhausted search is made to know the message from the public values C , n, S. 
And if N was equal 50 then it will take 5.1046  years to predict it. 
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