Proceeding of the 15! ICEENG conference, 24-26 March, 1998

/
JCEENG 9§ - |
MILITARY TECHNICAL COLLEGE ‘ - FIRST INTERNATIONAL CONF. ON

CAIRO-EGYPT ELECTRICAL ENGINEERING

Automation Support for Concurrent Software
Engineering

Salah Badr*
ABSTRACT

Thus paper presents an evolution control system that provides automated assistance for the software evolution
process in an uncertain environment where designer tasks and their properties are always changing

We view an Evolution Control System (ECS) as the agent that keeps track of proposed. ongomng. and
completed changes to a software svstem It provides automated assistance to the software evolution manager
to help him/her make the nght decisions. [t automatically propagates change consequences by construcung
the set of possibly affected modules 1t also coordinatess change implementation activities within the design
team in a way thal supports team work and maintains system integnty. as well as adapung itself to the
dynamic nature of the evolution process where new changes amve randomly and ongowng moditications are
themselves subject to change as more information becomes available

A. INTRODUCTION

An ECS has two main functions The first is to control and manage evolving software syvsiem components
(version control and configuration management. VCCM) and the second 1s to control and coordinate
evolution team interactions in a way that maximizes the concurrent assignment and meets management
constraints such as deadlines and precedences (planning and scheduling software evolution tasks which we
refer to as evolution steps)

This system provides the required algorithms for coordinating and executing the activities mentioned above
as well as the algorithms for reaching and maintaimng a feasible schedule, if one exists, that meets the
deadline requirements. reduces/avoids rollbacks. and insures svstem integrity in an uncertain environment
where the set of evolution steps and their properties are always changing

B. PREVIOUS WORK

The main areas in software engineenng relevant to ECS are software development/evolution, version control
and configuration management, task planning and scheduling. and concurrency control

1. FORMAL EVOLUTION MODELS

in [9], Lugi presents a graph model for software evolution that introduced the notion of evolution step as the
activities of initiation analysis and implementation of one request for change in the system under evolution

The graph model represents the software system evolution history as an acyclic bipartite graph G = {C. 5, L.
O} C nodes represent system components and S nodes represent evolution steps. The input edges | represent
the relation between a step and the set of svstem components that have to be examined to produce outpul
components thal are consistent with the rest of the system. The output edges O represent the relation between
an evolution step and the components 1t produces The states of an evolution steps as well as the generation
of substeps to propagate the change consequences are also defined. In this paper we extend this graph model
to include other relations among svstem components (“part_of” and “used_bv"™) and the “part_ol”
relationship between composite step and 1ts substeps

Unlike the onginal development cvcle. the evolution activities (adaptive, corrective. and perfective
maintenance) must take into consideration the existing system's requirements. decomposition. constraints.
capabilities. and performance. The eftect of the changes must be propagated to preserve svstem consistency

In the mean tme. concurrent changes must be coordinated 1o avoid rollbacks and wasting engineenng effort
Evolution changes must be planned so that they meet the management constraints such as deadhines.

* () Salah Badr s the chiet of information svstems branch. Armament Authority of the Egypuian Armed Forces

Proceeding of the 15! ICEENG confererce, 24-26 March, 1998.

i cach path that has only [and O cdges Thas represents the evolution history view ol the graph The edges
represent the “part_ot” (hetween a sub-component of a composite component and the composite component)
and “used by’ relations (defined between components to represent the situation where the semantics o1
implementation ot one component A depends on another component 13213 used by A) between the sottware
components ol a given conliguration { CEc(x (e spart_ol” relation between a substep ol
composite step and the composite step (SE < 8 x 8 . the mput relation between the svstem components
w hich must be examined to produce output components that are consistent with the rest of the svstem and the
corresponding evolution steps([c(C 5. and output relation between evolution steps and the components
they produce () € § * (7). System components arc immutable versions of software souree objects that
cannot be reconstructed automatically

An “edge_tvpe” atnibute 1s used to distinguish between the two kinds of edges representing the relations
‘used_by " and “part_of” detined on the setof edges CEC € x (" The “used_by " relation can be used for
automatic identitication of inputs of proposed evolution steps and dentification of the induced steps tnggered
by a proposed step.

[he model distinguishes between the primary and secondary mputs ot a step The primary imput concept cai
be formalized by introducing the atnbutes object _1d. version 1d and vanation_id ot cach version Vanations
represent alternative chotces, winch may correspond to different tformulations of the requirements in the
context of prototyping, or different kinds of svstem software (operating system. window manager, et) in the
context of product releases. tach vanation 1s a lincarly ordered sequence of versions. An input o i step s
primary 1f and only 1t 1tas the previous version of the same object and belongs to the samge vanation s the

output of the step
1. Version and Variation Numbering

As soon as the mput base version of a step 1s bound. the svstem assigns the version and variation number of
the output object for the step Ihe vanations are assigned successive numbers beginning with | for the imual
cartation. Verstons along cach vanation are assigned successive numbers starting with 1 at the root version
of the mmtial vanation, This means that the new version number 1s the hase verston number plus one. while
the vanation number has twvo possibilities the first possibility 1310 keep the base version’ s vanation number
1t the ume the step 1s assigned his oceurs when the base version s the most recent version on its vanaton
bine at the ume the step s assigned. The other possibility 15 (o use the “next” vanation number. w hich 1s the
nghest vanation number plus one I'lns labehng funcuon Qlustrated 1n Frgare 1 s the same tor both atomic
or composite objects (the entire software svstem is represented as @ compuosite object)

Ilus labehng tunction allows a version o belong to more thun one vanation which 18 o necessary modification
10 [9] to stmphity the process ol tracing the development history of a version and to keep a logical and realistic

Jevelopment history

FIGURE 1. Variation and version numbering

2. States of Evolution Steps

I'he dvnamics of the evolution steps are modeled by assoctating six different states with cach step L0 express
the different activities cach step has to undergo dunng its hfeume. The state transition diagram in Figure 2
<hows the different exphicit decisions that have to be made by the management to cause the transition {from
one state to the other. [t also shows the automated transiions from the scheduled state to the assigned state
and vice versa (explaned n detail in subsections ¢. and d below) BY controlling the states of the evolution

Proceeding of the 15! ICEENG conference. 24-26 March, 1998. |C EL 344 I

a. Scheduling Tasks with Precedence Constraints

Scheduling tasks with arbitrary precedence constraints and unit computation e an multiprocessor systems
15 NP-hard for both the preemptive and nonpreemptive cases [12] [21] Schedulng nonpreemptive tasks with
arbitrary ready times 1s NP-hard 1n both muluprocessor and uniprocessor svsiems [12] 120] which excludes
the possibility of the existence of a polynomial tme algonthm for solving the problem. Hong and Leunyg [4]
proved that there 1s no optumal on-hine scheduler can exist tor task svstems that have two or more distinet
deadlines when scheduled on madentical processors where m > |
Scheduling evolution steps to more than one designer with arbitrary. precedence constramts and arbitrary
deadlines ts the same problem as that of multiprocessor scheduling mentioned above which is shown by many
rescarchers to be NP-hard. These negative results dictate the need for heunistic approaches to solve scheduhng
problems in such svstems
In [16] Stankovic et al. present an O (n?) heuristic scheduling algonthm for scheduling a set ot independent
processes on a set of 1dentical processors. A task (process) in this model is charactenzed by an amival e
I'\. a deadline Tpy, a worst case computation tume T, and a set ol resource requirements 1Ty Tasks are
imdependent, non pertodic and non-preemptive. In [12], Ramamntham ct al. introduce an Omk) version ol
the algorithm introduced in [16] by considering only k tasks of the remaiming tasks to be scheduled at cach
step. We have extended this algonthm to deal with precedence constraimts and expertise levels ot designers
(1]
C. CONCEPTUAL MODEL
Since the main purpose of the ECS s managing software evolution m a rapidly evolving system. we review
the graph model of software evolution that constitutes the contest tor bullding the ECS (9] [10] The goal of
this model 1s to provide a framework tor mtegrating software evolution activities with contiguration control
[9] The model of software evolution has two mamn elements’ svstem components and evolution steps. System
components are immutable versions ol software source objects that cannot be reconstructed automatically.
livolution steps are changes to svstem components that have the following properties in the onginal version
ot the graph model [9]
I A top-level evolution step represents the activities of mitation, analysis. and implementation ot one
change request

> An evolution step mav be cither atomic or composite

Y An atomice step produces at most one new version of a svstem component. This property s no longer tnie
1 our model 1 order to inctude the cases m whnch an atomie step s apphed to an ongmally atomie com-
ponent that needs to be decomposed according to some design considerations, s decomposition may
lead to the production of more than vne component. s modification 1s lustrated n section C 2 ¢ later
in this chapter

4 T'he mputs and outputs ol a composite step correspond to the inputs and outputs ot its substeps

S The model allows steps that do not lead to the production of new contigurations. ¢ g design altematives
that were explored but not included in the contiguration repository '

6 Completely automatic transtormations are not considered to be steps and are not considered in this
model.

7 The graph model can cover multiple svstems which share components. alternative vanations of a single
svstem. and a series of configurations representing the evolution history of each alternative vanation of a
svstem. ’

% A scope s associated with each evolution step whichidenuties the set of svstems and vanations to be
alfected by the step. The scope 1s used to determine which induced evolution steps are implied by a
change request

The evolution history 1s modeled as a graph G=[C. S, CE. SE. 1L O] This graph s a directed acyelic graph

(bipartite with respect to the edges | and O). C and S are the two kinds of nodes (L. software component

nodes. and S: evolution step nodes respectuivelv). Each node has a unique idenufier. C and S nodes alternate

Proceeding of the 15! ICEENG conference, 24-26 March, 1998. CE.L 345

[ncluding the evolution steps, with all the data they have about the change they implement. as nodes i the
bipartite evolution hustory graph facilitates evolution history tracing.

Our concept of compaosite cntiics and 1ts generalizaton (o itsystem configurations is also siular to that used
in PACT [13] Our system uses computed labeling function and a single versionng mechanism for
automatically versioning individual objects as well as configunng a system (ds a composite objeet)
Sumplifving version control and configuration management and making 1t transparent (o the user without
requining his/her intervention, as it s the case in our system. are (wo ol the main goals of a good version
control and configuration management system as set forth by Feldman in [4].

According to Kaiser and Perry {4] the main tools that propagate changes among modules are listed below
[lowever. none of these support the entoreed model of cooperation AMong Prograniners NECEssury for large
maintenance/evolution projects or automatically assign tasks to programmers:

Make: a UNIX tool that 1s used for regenerating up-to-date exccutables after source objeets have been
changed.

Butld 1s an extension to make that penmit various users o have different views ol target sottware svstem
Cedar the Cedar Svstem Modeler uses an advanced version of the Make tool with version control to imvoke
the tools on a specttic versions of files. This System intforms the "Release Master™, a programmer. about any
svatactic tertace errors. The Release Master 1s responsible for making work arrangements with responsible
programmers

DSEE . the Apollo Domam Software Engmeering Environment also uses a Make-like ool with version
control. DSEE also has a monitonng facility that permits programimers and/or managers o request o be
notified when certain modules are changed.

Masterscope: Interlisp’s Masterscope (ool maintams cross-reterence nformation between program: unis
automatically . [t also approximates change analvsis of potential interference between changes by answering
quenes about syntactic dependencies among program units

SVCE: the Gandalf System Version Control Environment performs incremental consistency checking across
the modules in its database and notfies the programmer of errors as soon as they oecur. The consistency
checking 1s lumited to svatactic interface errors [t supports multiple programmers working in sequence but
Jdoes not handle simultancous changes.

Kaser and Perrv [4] (7] [T also desceribe Infuse, 4 svstem that automates change management bv entorcing
PrOErammer COOPEration (o Maintdin consislency among 4 sequence ol scheduled source code changes [nfuse
automatically partitons these modules into hierarchy of expernimental databases but programmers are
asstened o the these databases manually This partitoning may be done accordimg to the syntactic and:ot
semantic dependencies among the modules or according o project management deciston Consistency
checking among the expenmental database modules 15 a pre-condiuon [or merging database buack to s
parent expenmental database tmeaning that the mterface between the modules must be correct and that the
modules can compile and hink successtully).

In our svstem tasks and copies of the assoctated versions of soltware components are assigned automaticalh
{0 designers (programiners) according to their dependencies Versions are generated automatically as soon as
the work 1s done. Svntactic and semanuic consistency checking for source code can be implemented by
associating declarations of consistency constraints with steps. and tniggenng the required checking actions as
part ol the commut protocol. .

3. APPROACHES TO SCHEDULING EVOLUTION STEPS

A scheduling problem n areal-ime svstem is described by three basic concepts. the model of the system. the
characteristics of the tasks to be scheduled, and the objective of the scheduling algonthm [12]

Task scheduling in real-ume svstems can be static or dvnamic. A static approach performs the caleulation of
the schedules tor tasks oft-hne. It requires prior knowledge ot the charactenstics of the tasks. On the other
hand. a dvnamic approach calculates schedules for tasks “on the v~ Static approaches have low run-time
cost. but they are inflexible and cannot respond to a changing environment with unpredictable behavior
Dvnamic approaches involve higher run-time costs. but thev are tlexible to adapt to environment changes: A
survev of static and dvnamic scheduling approaches can be found in | 12].

Task scheduling can also be charactenzed as preemptive and nonpreemptive. A task 15 preempuive b its
execution can be interrupted by other tasks and resumed afterwards A task 1s nonpreempuive b it must i to
completion once 1t starts.

Proceeding of the 15! ICEENG conference, 24-26 March, 1998. CEL 346

precedence. and priornitics s indicates the need tor an evolution control svstem that takes into aceount the

special charactenstes of the evolutton tmantenance) phase ot the sottware hite evele process that aceount
up o 75% of the cost ol the soltware svstems [13]

In the evolutonary prototyping model. where a protolvpe evolves via a number ol versions to the Linal
wsten, developers start evolving the soltware svstem [rom its fundamental concepts. then keep modiiving
the svstem i an mteractive way with the customer untl the svstem retlects the customer s real needs The
support provided by an cvolution control system 1s particularly important in such an interactive, exploratory
wvstem development model because all kinds of changes are going on simultancously ., corrective changes to
retlect the real customer regquirements after reviewmng the designer’s terpretation ol portions ol the
developed requirements. adapuve changes to the rest of the customer’s real needs. and perfective changes to
the fundamental concepts already aceepted by the customers. The interactions between these difterent
activities., the coordination among related ones. propagating the effects of cach of these changes to the rest ol
the developed modules. and keeping track ot which component belongs to which svstem version are the main

poals of our evolution control svstem

2. VERSION CONTROL AND CONFIGURATION MANAGEMENT

As mdicated i (14, version control and configuration management s one ot the fields i ~sottware
enpmeering that has recerved much discussion and many proposals for proper version and conliguration
models i difterent domams. but hittle has been implemented, and much remains © be done i developimg
techmgues for ensuring the consisteney of configurations and space efficient algonthms for version

management.

Accordig o [X] and [3]. representations of the verstomng process can be classtlied mto two man modeds
The first model 15 the conventuonal Version Onented Model (VOM) mwhich o svstem s divided mto
modules each ol which 1s versioned mndependently trom the other modules. To configure a svstem one has to
select o verston of cach module ot the system. [his makes version a primary coneept while change 15 a
secondary coneept as a difference between versions Both SCCS and RCS [17] [18] [19] confonn to this
model. The second model 1s the Change Onented Model (COM)Y In this model the functional change 15 the
primary concept. Versions are rdentified by a characteristie set of functional changes To contigure a svsteni
n this model. one has to seleet @ set of mutually compatible tunctional changes. Verstons in this model are
plobal. meanmyg that to examine a module one has to spectly a single version of the svstem st then proceed
to the required module: Tn o VOM svstem, (o examine 4 module one has o seleet the module st then

mdividually select which version ol this module s the targeet

Reterence [3] also defmes the composiion model and the long transaction model e composition model s
a natural outgrowth ol the VOM model A contiguration i this model consists ol a svstem model and version
selection rules. A svstem model hsts all the components of o svstem Verston sclection rules detine which
version 1s to be selected tor cach component to compose d contiguration rather than allowmg the user to

manually pick component versions

The long transaction model supports the evolution of whole systems as 4 sequence ol apparently atonuic
changes. and coordinates the change of software svstems by teams of developers, Developers work primaniy
with configurations rather than individual components A change 1 performed m atransaction. A spectitic
contiguration 1s sclected as a startimg point for changes which mmphieitly determines the version ol the
components. The moditications 1o this configuration are not visible outstde the transaction unul the
transaction 1s committed. Multiple transactions are coordinated via concurreney control schemes to puarantes
no loss of changes. The result of the committing of 2 transaction 15 4 new svstem configuration version cither
on the same development path or branch {from an existing development path resulting i a new alternative

(vartation) development path

Ouwr work utilizes coneepts trom both the VOM and long transaction madels. Applving a top level evolution
step to a base version of a sottware system leads o versioning of both the individual components involved in
the change and the entire sottware svstem producing a new configuration version (verston ot a whole svstem)
(0 addition our svstem automatically coordinates teamwark i such a wav that concurrency control s done at
4 hagher level of abstraction. 1 e the seralization of dependent evolution steps ts done by senahzang therr
assignment o developers in the same order and excluding the need tor the traditonal lockimg schemes

Proceeding of the 15t ICEENG conference. 24-26 March, 1998. CE.L 347

then the step status is automatically advanced to “assigned” and the designer 15 informed of the new

assignment. When a step s asstgned. the version bindings of s mpuls are automatically changed tfrom

generie to specific. An edge 1s added as an input edge between the pnimary mput component of the step and

the step itself in the conlfiguration graph.

¢. Completed State

In this state the outputs of the step have been venified. integrated. and approved for release. This is the nal

<tate for each successtully completed step. This state can only be reached from the assigned state usig the

“commit_step” command. In this state the output components of the step have been added to the configuration

graph. An output edge has also been added to the configuration graph between the step and 1ts output

component(s). A composite step enters the completed state when all of its substeps are completed

f. Abandoned State

In this state the step has been cancelled before it has been completed. The outputs of the step do not appear

as components in the evolution history graph. All partial results of the step and the reasons why the step 1s

abandoned are stored as attnibutes of the step for future reterence. This is the tinal state tor all steps that were

not approved by the management or cancelled in the “approved™, “scheduled” or "assigned™ states.

3.SCHEDULING MODEL

'he task in our case 1s to schedule aset of N evolution steps 8 =15, Sa.. Sy relative to a set of M designers

¥ 1+ 2o SN ¢

D =Dy Dy .. Dyt The designers are of three possible expertise levels {Low, Medium, High! Fach ste
15 112 M ¢ I I 1 P

has associated with it a processing ime t (8)). a deadline d (5;). a pnonty p (S;). and required expertise level

P g Py ihap VP q P
¢ (8;). Steps have precedence constraimts given im the torm of a directed acyelic graph G = (5.) such that

(5. 85) €k implies that 8; cannot start until 8; has completed.

Because of the dvnamics of the prototyping/evolution process, the steps to be scheduled are only partiaily
known. Time required. the set of sub-tasks for each step. and the input/output constraints between steps are
a1l uncertain, and are all subject to change as evolution steps are carmied out.

Our goal 1s to dvnamically determine whether a schedule (the tume penods) for executing a set ol evolution
steps exists such that the timing. precedence, and resource constraints are satishied. and to caleulate tus
schedule it 1t exists

D. DESIGN

e purpose ol the Evoluton Control Svstem. ECS. 15 to provide automated support tor changes m plan
during the execution of the plan. and provide automatic decision support for planning and team coordination
based on design dependencies captured in the contiguraton model. The ECS also manages the soltware
cvolution steps from its creation to completion and provides automatic version control and configuration
management tor the products of these steps

a. Context Model

The Evolution Control Svstem (ECS) interacts with two external entities: the software evolution manager and
the software designer These represent classes of human users rather than extemal sottware or hardware
svstems. There 15 one external interface for cach class of user’ the manager nterface and the
Jesigner _interface. Both of these interfaces are views of the proposed ECS. The message tlow diagram in
FFigure 3 and the sumulus-response diagrams in Figures 7, 8.9 and 10 show the context of the svstem and the
available commands. their etfects and the possible error conditions.

1. State Model And Related Concepts .

The state of the ECS consists of a configuration graph. a schedule. a set of designers, and mappings giving
the tollowing attnbutes for each evolution step: deadline. estimated duration, precedence. prionty. status and
required expertise level. The formal definitions of the state model and the constraints on a teasible schedule
are defined mn [1].

Proceeding of the 15! ICEENG conference, 24-26 March, 1998. [CE4 348 |

steps. the evolution manager exercises direct control over both sottware evolution/development and the
resulting software configurations. The following are the definitions of those states and the comesponding
actions that cause the transition from one state to the other. These states are similar to those presented m [9]
except that a new state called “assigned” has been added for the reasons explained below

a. Proposed State

In this state a proposed evolution step 1x subjected (o both cost and benetit analy sis. This analysis also
includes identifving the sottware objects comprising the input set of the step. A “proposed” step s gencrally
added to the configuration graph as an 1solated step node that does not have any input. output or part_ot edges
(except when an old version is used that has existing specific reterence). This is because the pnmary and
sceondary input attnibutes are mostly generic inputs (object_id and vanation_id only)

b. Approved State

[n this state the implementation of the step has been approved but not scheduled yet and the input set of the
step 1s not bound to particular versions. Approval of a proposed step by the management triggers the
decomposition process to create an atomic sub-step for each pnmary or affected component of the step. These
sub-steps inhent the status of their super-step which 1s “approved” in this case. and are added to the
configuration graph with a part_of edge between each sub-step and its super-step. It 1s also in this state that
the substeps are augmented with attnbutes that include the estimated duration of each sub-step and
management scheduling constramnts such as precedence, deadline, and prionty.

r suspend

schedule

O IFinal state
* Automatic transition

——p» command trunsition

FIGURE 2. Evolution step’s state transition diagram

¢. Scheduled State

ln this state the implementation has been scheduled and the step is not yet assigned to a designer. The
“scheduled” state is reached from the “approved” state via the command “schedule_step” thut indicates that
the management constraints are complete and enables the scheduling and job assignment mechamisms. The
scheduling mechanism produces an updated schedule containing the newly scheduled step. A schedule
specifies the expected starting and completion times for the step.

d. Assigned State

In this state the step is assigned to the scheduled designer, all inputs are bound to particular versions, and
unique identifiers have been assigned to its output components, but these components are not vet part of the
cvolution history graph. A composite step enters the assigned state whenever any of its substeps 1s assigned.
The assigned state 1s reached automatically from the scheduled state. When a designer is available. the
schedule 15 used to determine histher next assignment. If his/her next assignment 15 ready to be camed out

Proceeding of the 15t ICEENG conference, 24-26 March, 1998. CE' L 349

— Designer |
commut_substep
g :
3 | Desigher_Intertac
T
2
.\’llm\:f_st.l:ps .E‘ S . designer_pool
creatdstep = controls bl el
edit_step P‘ z 1 conliguration _graph
show _scheduic z schedule
o Manager_Intertace
reate prototype. approve_step, schedule_step.
commit_step. abandon_step.
suspend_step, manager_confirmation.
add_designer. drop_designer. designer_expertise_level
L—i Manager |

FIGURE 3. ECS message flow diagram

2. Interfaces

I'he manager intertace o the ECS enables the manager to create new prototypes, provide for the evolution of
the existing protolypes via i complete set ot commands for creating, editing, schedulng, suspending/
abandoning and/or committing evolution steps. and manage the designer_pool data via add _designer.,
drop_designer. and designer_expertise_level commands. The designer interface to the ECS enables the
destgrer to view the stens 1n a given prototype with a given status and get the sub-steps assigned to hum. This

interface also enables the designer to create a sub-step of an assigned step as well as commutting the assigned
sub-step. The tormal specifications of the vanous commands with the ditferent responses for cach cormmand
are defined in [1]

I'he following parameturs can be adiusted manually (using the edit _interface) as uncertaimues are resolved
and planmng crrors are corrected 1 Affected modules (Addidel). 2 Secondary nput (AddAdel) 3
Constraints (Precedence. Priority, Deadlines) ¢ Initiahize/Update) 4 Esumated duration | Updatey 5 Resouree
(Designer Pool Changes) (Add/drop. Update)

done

Commit_substep schedule_chunges

nu’sucl__ussigncd)‘uswp

FIGURE 4. Stimulus-Response diagram for the designer interface

I'he schedule step command tnggers the scheduling mechanism that finds a feasible schedule 1f one exist or
suggest changes 1o the deadlines of the lower prionty steps until a teasible schedule 1s reached. When a
designer 1s available fer his assignment the ECS automatically checks out the required components from the
design database to the designer’'s workspace and sends an ¢_mail message to the designer informing him
about his new assignment. When a designer fimishes his assignment, he simply issues the commit_step
command. The svstem then automatically checks in the modified components to the design database giving
them the right version and vanation numbers and binding them to the appropriate configuration

The ECS automatcally monitors changes n plan and takes the appropnate action to mantain the required
constraints.

Proceeding of the 15! ICEENG conference, 24-26 March, 1998. ICE,A :350 l

Done

schedule _changes

/C

add]_primary n
.ul I son ﬁ! Tl change_undone
ade l| LLtL .

change _not_authorized

uirculur _precedence

no_such_s(ep

~___ Done
/ =~
upijate rpt.cd(.nu‘ ——, schedule_changes
Latc:ﬁ Jm ‘ __’-
ate line
riority_conflict (priority, precedence only)

date” ¢ rdd
AN oy e

change_undone
\ -
LY change_not_authorized

(O

circular_precedence

5 '/{#.
no_such_step

—— Done .| state change

rimarv_in b
Je|eeta R —

L!C_J Cttc _hfou _ schedule_changes O) iz
T i no state change
undefined _input .
e R normal response

\C> no_such_step
R, -
sl e LXCEpUION

FIGURE 5. Stimulus Response diagram for the edit interface

E. CONCLUSION
Imtegrating planmir g anc version control allows both parts o be more tully automated. This technology muy
also enable a single marager o handle projects ot larger size by providing decision support and takinge care

ol low level details

Proceeding of the 15t ICEENG conference, 24-26 March, 1998. CE.L 35|

Done

Add designer

Create prototype

p"m);.pe'“““ dfsg:ner _exists

. done
show_schedule Mheduic Drop designer

no_available_schedule _required

schedule_chunges

approve step
step_is_not_in_

pro. state no_such_designer

done

schedule_changes

schedule step infeasible_schedule

estimated_duration ~(Jeeee
............ e _nut_spcciﬂec
circular_precedence

step_is_not_approver show_designers

no_such_step

Commit step

Suspend ste
Abn‘::don stepp

done

schedule_changes

o_such_step

R

FIGURE 6. Stimulus Response diagram for the manager interface

REFERENCES

[1] Badr Salah. A Model and Algonthms for a Software Evolution Control Svstem™. Ph. D
Dissertation. Computer Science Department. Naval Postgraduate School. December 1993,

[2] Dampier D., Luqi. “A Model for Merging Software Prototypes ™. Technical Report. NPS C5-92-014

[3] Feiler P. H., “Configuration Management Models in Commercial Environments™, Technical Report
CMU-91-TR-7, ESD-91-TR-7. 1991.

[4] Feldman 8. [, “Software Configuration Management: Past Uses and Future Challenges™ Proceedings
of 3rd European Sottware Engineering Conference. ESEC ‘91. Milan. Ifaly, October 1991

(5] Hong K. and Leung J.. “On-Line Scheduling of Real-Time Tasks™ Real-Time Svstems Workshop.
May 1988

(6] Kaiser G. E., and Perry D. E.. “Workspaces and Expenmental Databases: Automated Support tor
Software Maintenance and Evolution™, Proceedings of [EEE Conference on Software Maintenance

1987. pp. 108-114.

Proceeding of the 15! ICEENG confererce, 24-26 March, 1998. CE.L 352

[7] Kaser G, E., and Perry D, E., and Schell W M, “Infuse: Fusing [ntegration Test Management with
Change Management”, Proceedings ot the Thiacenth Annual [ntermational Computer Software &
Applications Conterence, Orlando, FL, September 20-22, 1989

[%] Lie A etal, "Change Oriented Versioning in a Software Engincenng Database™, Proceedings of 2nd
International Workshop on Software Configuraton Management, Prnnceton, New Jerseyv, Oct
24.1989. pp. 36-65.

[9] Luq. ™A Graph Model tor Software Evolution™. [EF: Transaction on Soltware Engineering. Vol 1o
NO. 8. Aug. 1990 pp, 917-927

[10] Mostov [, Luqu, and Hetner K., “A Graph Model for Sottware Maintenance”™. Tech. Rep. NPS52-90-
014, Computer Science Department, Naval Postgraduae School, Aug. 1989

[1] Perry D L., and Kuiser G. E., “Intuse; A Tool tor Autonaucally Managing and Coordinating Source
Changes in Large Svstems”, Proceedings of the 1987 ACM Fifteenth Annual Computer Science
Conterence. St Louis, Missoun, February 1987, pp 292-2)9

12} Ramamntham K., Stankovic J. A. Shiah P. "Efficieat Scheduling Algonthm for Real-Time
Multiprocessor Systems”, COINS Technical Report 89-27. Dept. of Computer and Information
Science, University of Massachusetts, 1989

[13] Simmonds lan, “Configuration Management i the PACT Software Engineenng Enviromument”.
Proceedings of 2nd [nternational Workshop on Seftware Contiguraton Management. Princeton. New
Jersey, Oct. 24,1989, pp. 118-121

[14] Silberschatz A.. Stonebraker M.. and Ullman J. “Datarase Svstems: Achievements and
Opportunities”. Communication of the ACM, October 1991/Vol. 34, No. 10, pp. 110-120.

[15] Sommerville lan “Softtware Engineenng”. Fourth editton. Addison-Weslev 1992

[16 | Stankovic J. A., Ramamntham K. Shiah P. and Zhao W.. "Real-Time Scheduling Algorithms for
Multiprocessors™. COINS Technical Report 89-47

| 17] Tichv W F _"RCS- A Svstem tor Version Control ™, Software Practice and Expenence. VOL. 13 (7).
July 1985 pp 637- 6354 A

[I%] Tichy W F.. ~“Tools tor Software Contiguration Management”. International Workshop on Software
Version and Configuration Management”, Girassau, FRG 27-29 January 1988

[19] Willlam B. Franks. C J Fox. and 3. A Neymeh, "Soltware Engincening in the UNINX/C
linvironment”, Prentice Hall 1991

{20] Xu Jia. “"On Satstving Timing Constraints 1in Hard-Real-Time Svstems™. I[EEE Transactions on
Software Engineenng. Vol 19, No |, January [993

[21] Xu Jia., "Muluprocessor Scheduling of Processes with Release Times, Deadlines, Precedence. and
Exclusion Relations™, IEEE Transactions on Software Engineening, Vol. 19, No. 2. Februarv 1993

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

