
Proceeding of the 1st ICEENG conference, 24-26 March, 1998. ICE!. 34 2

MILITARY TECHNICAL COLLEGE
CAIRO-EGYPT

icEENG 9g'I
FIRST INTERNATIONAL CONF. ON
ELECTRICAL ENGINEERING

Automation Support for Concurrent Software
Engineering

Salah Badr*
ABSTRACT
This paper presents an evolution control system that provides automated assistance UK the software evolution
process in an uncertain environment where designer tasks and their properties are always changing
We view an Evolution Control System (ECS) as the agent that keeps track of proposed. ongoing. and
completed changes to a software .s-v stem It provides automated assistance to the software evolution manager
to help him/her make the right decisions. It automatically propagates change consequences by constnicting
the set of possibly affected modules It also coordinate's change implementation activities within the design
team in a way that supports team work and maintains system integrity, as well as adapting itself to the
dynamic nature of the evolution process where new changes arrive randomly and ongoing modifications are
themselves subject to change as more information becomes available

A. INTRODUCTION
An ECS has two main functions The first is to control and manage evolving software system components
(version control and configuration management. VCCM) and the second is to control and coordinate
evolution team interactions in a way that maximizes the concurrent assignment and meets management
constraints such as deadlines and precedences (planning and scheduling software evolution tasks which we
refer to as evolution steps).
This system provides the required algorithms for coordinating and executing the activities mentioned above
as well as the algorithms for reaching and maintaining a feasible schedule, if one exists, that meets the
deadline requirements, reduces/avoids rollbacks, and insures system integrity in an uncertain environment
where the set of evolution steps and their properties are always changing

B. PREVIOUS WORK
The main areas in software engineering relevant to ECS are software development/evolution, version control
and configuration management, task planning and scheduling, and concurrency control.

1. FORMAL EVOLUTION MODELS
In [9], Luqi presents a graph model for software evolution that introduced the notion of evolution step as the
activities of initiation analysis and implementation of one request for change in the system under evolution
The graph model represents the software system evolution history as an acyclic bipartite graph Ci = C. S, 1.
O C nodes represent system components and S nodes represent evolution steps. The input edges I represent
the relation between a step and the set of system components that have to be examined to produce output
components that are consistent with the rest of the system. The output edges 0 represent the relation between
an evolution step and the components it produces. The states of an evolution steps as well as the generation
of substeps to propagate the change consequences are also defined. In this paper we extend this graph model
to include other relations among system components ("part_or and "used_by-) and the "part_ol.

relationship between composite step and its substeps
Unlike the original development cycle. the evolution activities (adaptive, corrective. and perfective
maintenance) must take into consideration the existing system's requirements. decomposition, constraints.
capabilities, and performance. The effect of the changes must be propagated to preserve system consistenc\
In the mean time, concurrent changes must he coordinated to avoid rollbacks and wasting engineering effort
Evolution changes must be planned so that the \ meet the management constraints such as deadlines.

* Dr Sa'ah Badr is the chief of mtormahon systems branch.. Vrnament \ 	of the I.gyphan Armed t or,:e,

ICE .4 3431
Proceeding of the 1St ICEENG conference, 24-26 March. 1998.

in each path that has only I and () edges. This represents the evolution history view of the graph. The edges

represent the -
part_or (between a sub-component of a composite component and the composite component)

and "used_by" relations (defined between components to represent the situation where the semantics or
implementation of one component A depend:: on another component 13.13 used_by Al between the software

components of a given configuration (CEc C x C the -part_ol relation between a substep of .1

composite step and the composite step (SEc S x S the input relation between the system components

which must be examined to produce output components that are consistent with the rest of the system and the

corresponding evolution steps(! C (
S), and output relation between evolution steps and the components

they produce (0 C S 	
System components are immutable versions of software source objects that

cannot he reconstructed automatically.

An "edge.
..type" attribute is used to distinguish between the two kinds of edges representing the relations

"used_by" and "part_or defined on the set of edges CECC x 	The "used_by relation can he used for

automatic identification of inputs of proposed evolution steps and identification of the induced steps triggered

by a proposed step. The model distinguishes between the primary and secondary inputs of a step. The primary input concept can
be formalized by introducing the attributes object id. version _id and variation _id of each version. Vanations
represent alternative choices, which may correspond to different formulations of the requirements in the
context of prototyping, or different kinds of system software (operating system. window manager, etc.) in the
context of product releases. Each variation is a linearly ordered sequence of versions. An input to a step is
pnmaty if and only if it is the previous version of the same object and belongs to the same variation as the

output of the step.

I. Version and Variation Numbering
As soon as the input base version of a step is bound. the ..4ySteM assigns the version and variation number of
the output object tier the step. The variations are assigned successive numbers beginning with I for the initial
variation. Versions along each variation are assigned successive numbers starting with I at the root version
of the initial variation. 'Ms means that the new version number is the base version number plus one, while
the variation number has two possibilities: the first possibility is to keep the base version's vanatton number
at the time the step is assigned. This occurs when the base version is the most recent version on its variation
line at the time the step is assigned. The other possibility is to use the "next' variation number, which is the

highest variation number plus one this label 	function illustrated in Figure I is the same for both atomic

or composite objects (the entire software system is represented as a composite object
this labeling function allows a version to belong to more than one variation which is a necessary modification
to 191 to simplify the process of tracing the development histon: of a version and to keep a logical and realistic

development history.

FIGURE I. Variation and version numbering

2. States of Evolution Steps
Me dynamics of the evolution steps are modeled by associating six different states with each step to express
the different activities each step has to undergo during its lifetime. The state transition diagram in Figure 2

shows the different explicit decisions that have to be made by the
management to cause the transition from

one state to the other. It also shows te automated transitions from the scheduled state to the assigned state

and vice versa (explained in detail in
subsections c. and d below) By controlling the states of the evolution

IC E..4 344 Proceeding of the 1st ICEENG conference, 24-26 March, 1998.

a. Scheduling Tasks with Precedence Constraints

Scheduling tasks with arbitrary precedence constraints and unit computation time in multiprocessor systems

is NP-hard for both the preemptive and nonpreemptive cases 11211211. Scheduling nonpreemptive tasks with
arbitrary ready times is NP-hard in both multiprocessor and uniprocessor systems 1 1211201 which excludes
the possibility of the existence of a polynomial time algorithm for solving the problem. I long and Leung [41
proved that there is no optimal on-line scheduler can exist for task systems that have two or more distinct
deadlines when scheduled on m identical processors where in >
Scheduling evolution steps to more than one designer with arbitrary precedence constraints and arbitrary
deadlines is the same problem as that of multiprocessor scheduling mentioned above which is shown by many
researchers to he NP-hard. These negative results dictate the need fir heuristic approaches to solve scheduling
problems in such systems.

In 1161 Stankovic et al. present an 0 (n2) heuristic scheduling algorithm for scheduling a set of independent
processes on a set of identical processors. A task (process) in this model is characterized by an arrival time
TA, a deadline 'CD, a worst case computation time Tc. and a set of resource requirements ;Tit ;. Tasks are

independent, non periodic and non-preemptive. In 112_1. Ramamritham et al. introduce an Oink) version of
the algorithm introduced in 1161 by considering only k tasks of the remaining tasks to he scheduled at each
step. We have extended this algorithm to deal with precedence constraints and expertise levels of designers

III

C. CONCEPTUAL MODEL
Since the main purpose of the I CS is managing software evolution in a rapidly evolving system. we review
the graph model of software evolution that constitutes the context for building the tiCS [911101 The goal of
this model is to provide a framework for integrating software evolution activities with configuration control
191. The model of software evolution has two main elements: system components and evolution steps. System
components are immutable versions of software source obtects that cannot he reconstructed automatically.
Evolution steps are changes to system components that have the following properties in the original version
of the graph model [91:

I A top-level evolution step represents the activities of initiation. analysis. and implementation of one
change request.

An evolution step inay he either atomic lir composite.

An atomic step produces at most one new version of a system component. This property is no longer true
in our model in order to include the cases in which an atomic step is applied to an originally atomic com-
ponent that needs to he decomposed according to some design considerations. this decomposition ma%
lead to the production of more than one component. rhis modification is illustrated in section C 2.e later
in this chapter.

4 Ile inputs and outputs of a composite step correspond to the inputs and outputs of its substeps.

The model allows steps that do not lead to the production of new configurations, c g. design alternatives
that were explored but nut included in the configuration repository.

Completely automatic transformations are not considered to be steps and are not considered in this
model.

7 The graph model can cover multiple systems which share components. alternative variations of a single
system, and a series of configurations representing the evolution history of each alternative variation of a
system.

A scope is associated with each evolution step whichidentifies the set of systems and variations to be
affected by the step. The scope is used to determine which induced evolution steps are implied by a
change request.

The evOlution history is modeled as a graph G=[C. S. CE. SE, I. 01. This graph is a directed acyclic graph
(bipartite with respect to the edges I and 0). C and S are the two kinds of nodes (C. software component
nodes, and 5: evolution step nodes respectively). Each node has a unique identifier. C and S nodes alternate

ICE.4 	345 Proceeding of the 1st ICEENG conference, 24-26 March, 1998

Including the evolution steps. with all the data they have about the change they implement, as nodes in the
bipartite evolution history graph facilitates evolution htstory tracing.
Our concept of composite entitles and its generalization to fit system configurations is also similar to that used
in PACT 1131. Our system uses a computed labeling function and a single versioning mechanism for
automatically versioning individual objects as well as configuring a system (as a composite ob1ccti
Simpl4ing version control and configuration management and making it transparent to the user without
requiring his/her intervention, as it is the case in our system, are two of the main goals of a good version
control and configuration management system as set forth by Feldman in 141.
According to Kaiser and Perry 141 the main tools that propagate changes among modules are listed below

I lowever. none of these support the enforced model of cooperation among programmers necessary for huge
maintenance/evolution projects or automatically assign tasks to programmers:
Make: a UNIX tool that is used for regenerating up-to-date executables alter source objects have been

changed.
Build: is an extension to make that permit various users to have different views of target software system.
Cedar: the Cedar System Modeler uses an advanced version of the Make tool with version control to invoke
the tools on a specific versions of files. This System informs the "Release Master-, a programmer, about any

syntactic interface errors. The Release Master is responsible for making work arrangements with responsible

programmers
DSEE: the Apollo Domain Software Engineering Environment also uses a Make-like tool with version
control. DSEE also has a monitoring facility that permits programmers and/or managers to request to be

notified when certain modules are changed.
Masterscope: Interlisp's Masterscope tool maintains cross-reference information between program units
automatically. It also approximates change analysis of potential interference between changes by answering

queries about syntactic dependencies among program units.
SVCE: the GandaIf System Version Control Environment performs incremental consistency checking across
the modules in its database and notifies the programmer of errors as soon as they occur. The consistency
checking is limited to syntactic interlace errors. It supports multiple programmers working in sequence but

does not handle simultaneous changes.
Kaiser and Perry 1411711111 also describe Infuse. a system that automates change management by enforcing
programmer cooperation to maintain consistency among a sequence of scheduled source code changes. Infuse
automatically partitions these modules into a hierarchy of experimental databases but programmers are
assigned to the these databases m anuallv This partitioning may he done according to the syntactic anxkor
semantic dependencies among the modules or according to project management decision Consistenex
checking among the experimental database modules is a pre-condition for merging a database hack to Ii

parent experimental database (meaning that the Interface between the modules must he correct and that the

modules can compile and link successfully I.
In our system tasks and copies of the associated versions of software components are assigned automatically
to designers tprogranunersi according to their dependencies. Versions are generated automatically as soon as
the work is done. Syntactic and semantic consistency checking for source code can he implemented by
associating declarations of consistency constraints with steps. and triggering the required checking actions as

part of the commit protocol.

3. APPROACHES TO SCHEDULING EVOLUTION STEPS

A scheduling problem in a real-time system is described by three basic concepts: the model of the system. the

characteristics of the tasks to he scheduled, and the objective of the scheduling algorithm 1121.
Task scheduling in real-time systems can he static or dynamic. A static approach performs the calculation of
the schedules for tasks off-line. It requires prior knowledge of the characteristics of the tasks. On the other
hand, a dynamic approach calculates schedules for tasks "on the fly - Static approaches have low run-time

cost, but they are inflexible and cannot respond to a changing environment with unpredictable behavior
Dynamic approaches involve higher run-time costs, but they are flexible to adapt to environment changes. :\
survey of static and dynamic scheduling approaches can be found in 112].
Task scheduling• can also he characterized as preemptive and nonpreempuve. A task is preemptive it as
execution can be interrupted by other tasks and resumed afterwards. A task is nonpreemptive if it must run to

completion once it starts.

Proceeding of the 1st ICEENG conference, 24-26 March, 1996. ICE!, 346

precedence. and priorities. This indicates the need for an evolution control system that takes Into account the
special characteristics of the evolution I maintenance) phase of the software IOC cycle process that account fin

up to 75% of the cost oh' the software systems' I 51
In the evolutionary prototyping model. w here a prototype evolves via a number of versions to the final
system. developers start evolving the software system front its fundamental concepts. then keep modifx mg
the system in an interactive way with the customer until the system reflects the customer's real needs. The
support provided by an evolution control system is particularly important in such an interactive, exploratory
system development model because all kinds of changes are going on simultaneously. corrective changes to
reflect the real customer requirements after reviewing the designer's interpretation of portions of the
developed requirements. adaptive changes to the rest of the customer's real needs, and perfective changes to
the fundamental concepts already accepted by the customers. The interactions between these different
activities, the coordination iunong related ones, propagating the effects of each of these changes to the rest of
the developed modules. and keeping track of which component belongs to which system version are the main

goals of our evolution control system.

2. VERSION CONTROL AND CONFIGURATION MANAGEMENT

As indicated in 1141, version control and configuration management is one of the fields in s■iftware
engineering that has received much discussion and many proposals for proper version and configuration
models in different domains. but little has been implemented, and much remains to be done in developing
techniques for ensuring the consistency of configurations and space efficient algorithms for version

management.
According to 181 and 131. representations of the versioning process can be classified into two main noldels

The first model is the conventional Versio
n Oriented Model l VOM) in which a system is divided into

modules each of which is versioned independently from the other modules. To configure a system one has to

select a version of each module of the system. This makes version a primary concept while change is a

secondary concept as a difference between versions. Both SCCS and RCS 1171 1IS11191 conform to this

model. The second model is the titmice Oriented Model (COM). In this model the functional change is the
primary concept. Versions are identified by a characteristic set of functional changes. To configure a system
in this model_ one has to select a set of mutually compatible functional changes. Versions in this model are
global. meaning that to examine a module one has to specify a single version of the sYstem first. then proceed
to the required module. In a VOM system. to examine a module one has to select the module Mst. then
individually select which version of this module is the target.
Reference 131 also defines the composnum model and the long transaction model. The composition model is
a natural outgrowth of the V()M model. :\ configuranon in this model consists of a system model and verston
selection rules. A system model lists all the components of a system. Version selection rules define which
version is to be sedected for each component to compose a elmfiguration rather than allowing the user it)

manually pick component versions.
The long transaction model supports the evolution of whole systems as a sequence of apparently atomic
changes. and coordinates the change of software systems by teams of developers. Developers work primarily
with configurations rather than individual components A change is performed in a transaction. A specific
configuration is selected as a starting point for changes which impheatly determines the version of the
components. The modifications to this configuration are not visible outside the transaction until the
transaction is committed. Multiple transactions are coordinated via concurrency control schemes to guarantee
no loss of changes. The result of the committing of a transaction is a new system configuration version either
on the same development path or branch from an existing development path resulting in a new alternative

(variation) development path.
(nu- work utilizes concepts from both the V()M and long transaction imidels. Applying a top level e%olution
step to a base version of a software system leads to versioning of both the individual components involved in
the change and the entire software system producing a new configuration version version of a whole system
In addition our system automatically coordinates teamwork in such a way that concurrency control is done at
a higher level of abstraction, 1 e., the serialization of dependent evolution steps is done by serializing their
assignment to developers in the same order and excluding the need for the traditional locking schemes

4.)

(CE-4 341
Proceeding of the 1st ICEENG conference, 24-26 March, 1998.

then the step status is automatically advanced to "assigned" and the designer is informed of the new
assignment. When a step is assigned, the version bindings of its inputs are automatically changed from
generic to specific. An edge is added as an input edge between the primary input component of the step and

the step itself in the configuration graph.

e. Completed State
In this state the outputs of the step have been verified. integrated, and approved for release. This is the final
state for each successfully completed step. This state can only he reached from the assigned state using the
"commit_step" command. In this state the output components of the step have been added to the configuration
graph. An output edge has also been added to the configuration graph between the step and its output
component(s). A composite step enters the completed state when all of its substeps are completed

f. Abandoned State
In this state the step has been cancelled before it has been completed. The outputs of the step do not appear
as components in the evolution history graph. All partial results of the step and the reasons why the step is
abandoned are stored as attributes of the step for future reference. This is the final state for all steps that w ere

not approved by the management or cancelled in the -approved", "scheduled" or -*assigned" states.

3. SCHEDULING MODEL
The task in our case is to schedule a set of N evolution steps S = S I , 	SN:. relative to a set of M designers

I) 	Dm: The designers are of three possible expertise levels ;Low. Medium. High: Each step

has associated with it a processing time tp (Si), a deadline d (Si), a priority p (Si). and required expertise level

e (S i).
Steps have precedence constraints given in the form of a directed acyclic graph U = (S. E) such that

Sj) E Ii implies that Si cannot start until Si has completed.
Because of the dynamics of the prototyping/evolution process, the steps to he scheduled are only path:lily
known. Time required. the set of sub-tasks for each step. and the input/output constraints between steps arc
all uncertain, and are all subject to change as evolution steps are earned out.
fur goal is to dynamically determine whether a schedule t the time penods) for executing a set of evolution

steps exists such that the timing, precedence. and resource constraints are satisfied. and to calculate this

schedule if it exists.

D. DESIGN
Ihe purpose of the Evolution (_ (itro! System. KS. is to provide automated support for changes in plan
during the execution of the plan. and provide automatic decision support for planning and team coordination
based on design dependencies captured in the configuration model. The ECS also manages the software
evolution steps from its creation to completion and provides automatic version control and configuration

management for the products of these steps.

a. Context Model
Me Evolution Control System (ECS) interacts with two external entities: the software evolution manager and

the software designer These represent classes of human users rather than external software or hardware
systems. There is one external interface for each class of user the manager __interface and the
designerinterface. Both of these interfaces are views of the proposed ECS. The message flow diagram in
Figure 3 and the stimulus-response diagrams in Figures 7, X. 9 and It) show the context of the system and the

available commands, their effects and the possible error conditions.

I. State Model And Related Concepts

The state of the ECS consists of a configuration graph. a...schedule, a set of designers, and mappings giving

the following attributes for each evolution step: deadline. estimated duration. precedence, priority, status and
required expertise level. The formal definitions of the state model and the constraints on a feasible schedule

are defined in i I I.

CE-4 348 Proceeding of the 1st ICEENG conference, 24-26 March, 1998.

steps. the evolution manager exercises direct control over both software evolution/development and the
resulting software configurations. The following are the definitions of those states and the corresponding
actions that cause the transition from one state to the other. These states are similar to those presented in 191
except that a new state called "assigned" has been added for the reasons explained below

a. Proposed State

In this state a proposed evolution step is subjected to both cost and Fitment analysis. This analysis also
includes identifying the software objects comprising the input set of the step. A "proposed" step is generally
added to the configuration graph as an isolated step node that does not have any input, output or ptu-t_of edges

(except when an old version is used that has existing specific reference). This is because the primary and
secondary input attributes are mostly generic inputs (object_id and vanationid only)

b. Approved State

In this state the implementation of the step has been approved but not scheduled yet and the input set of the
step is not bound to particular versions. Approval of a proposed step by the management triggers the
decomposition process to create an atomic sub-step for each primary or affected component of the step. These
sub-steps inherit the status of their super-step which is "approved" in this case. and are added to the
configuration graph with a part_of edge between each sub-step and its super-step. It is also in this state that
the substeps are augmented with attributes that include the estimated duration of each sub-step and
management scheduling constraints such as precedence, deadline, and priority.

suspend

schedule
create

Propose
approve

Approved
uspen

spend asstg
don ab don

iiibandon

O
Final state

Automatic transition

command transition

Abandons

comm

Complete

FIGURE 2. Evolution step's state transition diagram

e. Scheduled State

In this state the implementation has been scheduled and the step is not yet assigned to a designer. The
"scheduled" state is reached from the "approved" state via the command "schedule_step' that indicates that
the management constraints are complete and enables the scheduling and job assignment mechanisms The
scheduling mechanism produces an updated schedule containing the newly scheduled step. A schedule
specifies the expected starting and completion times for the step.

d. Assigned State

In this state the step is assigned to the scheduled designe.r, all inputs are bound to particular versions, and
unique identifiers have been assigned to its output components, but these components are not vet part of the
evolution history graph. A composite step enters the assigned state whenever any of its substeps is assigned.
The assigned state is reached automatically from the scheduled state. When a designer is available, the
schedule is used to determine his/her next assignment. If his/her next assignment is ready to be earned out

show_steps
crcate_step
edit step
shocif _schedule

Designer

commit_substep

1)esig er_Interface

L
designer_pol

	 con li gu rat n in _graph
schedule

Manager_Interface

commit 	
approve_step. schedule_step,

commit step, abandon_step...
suspend- step, manager_cont =anon,
add_designer, drop designer, designer_expertise_level

Manager

ECS controls

Commitsubstep

Proceeding of the 1st ICEENG conference, 24-26 March, 1998. 	ICE .4 349]

FIGURE 3. ECS message flow diagram

2. Interfaces
The manager interface to the ECS enables the manager to create new prototypes, provide for the evolution of
the existing prototypes via a complete set of commands for creating, editing. scheduling, suspending/

abandoning and/or committing evolution steps, and manage the designer_pool data via add_designer.
drop_designer, and desiper_expertise_level commands. The designer interface to the ECS enables the
dengrer to view the stir.is in a given prototype with a given status and get the sub-steps assigned to him. This

interface also enables the designer to create a sub-step of an assigned step as well as committing the assigned
sub-step.The formal specifications of the various commands with the different responses for each command

are defined in I I i.
The following parameters can be adiusted manually using the edit_interface) as uncertainties are resolved
and [limning errors are corrected. I Affected modules Add/dell. 2. Secondary input Add/del).
Constraints i Precedence. Priority. Deadlines) t lnivahzc hpdate). 4 Estimated duration dUpdate 5. Resource

Designer Pool Changes) (Add/drop. Update).

done

schedule _changes

nuir:h_ussimied_sustcp

FIGURE 4. Stimulus-Response diagram for the designer interface

the schedule_step command triggers the scheduling mechanism that finds a feasible schedule if one exist or
suggest changes io the deadlines of the lower priority steps until a feasible schedule is reached. When a
designer is available fcr his assignment the ECS automatically checks out the required components from the
design database to the designer's workspace and sends 'WI email message to the designer informing him
about his new assignment. When a designer finishes his assignment, he simply issues the commit_step
command. The system then automatically checks in the modified components to the design database giving
them the right version and variation numbers and binding them to the appropriate configuration.
The ECS automatically monitors changes in plan and takes the appropriate action to maintain the required

constraints.

state change

no state chance

normal response

exception

O lelete primary input
e etc-se_ 	runt

tie ete=attectetqtrintle

Proceeding of the 1't ICEENG conference. 24-26 Match, 1998. , 	CE.4 3501

atitl_rimar at t eson 4
I :Ittleetell

1-1
titii

111' 	El

Done

schedule changes

change_undone

change_not_authorized

circular_precedence
	OA-

undefined_object

no_such_step

	 Done
A 	 illo•

uNate4recetience
u) ate mints'
u ate ca late

	

r- ,____0„. — 	
1

—, schedule changes

ttpdate-estimated 	 prity
—
conflict (priority. precedence only)

dUratin _ r
ori

11/..t_E 	 change_undone

change not authorized

circular_precedence
0 nosh step
	40-

Done

schedule_changes

undefined_input

nosuch_step

FIGURE S. Stimulus Response diagram for the edit interface

E. CONCLUSION
Integrating planmr g ant, version control allows both pails to he more fully automated. tins technology may
;iko enable a smgf.i manager to handle pro vets of larger size by providihg decision support and taking care

of low level detail:•

prwtotype_es ists

Add designer

DPV

Done
1111•

substeps
approve step

step_is_not_in_
,propilicl state
No such step

I c E.4 	3511 Proceeding of the 1st ICEENG conference, 24-26 March, 1998.

schedule changes
	I♦
designer

—
exists

	1106.-
done

Drop designer

Expertise level

—11*-

Create prototype
	op. MI

schedule
show _schedule
--Owl MI no available schedule

warning_confirmation
_required

schedule changes

change_undone

no_such_designer

done

schedule changes

change_undone

no_such_designer
Ow.

schedule changes

infeasible_schedule
	taw^
estimated_ duration

circular_precedence
	4$10-
step_is_not_approves
	-1110-
no_such_step
	Oa-

schedule step

show designers

MI

Commit step
Suspend step
Abandon step

	 J
I

schedule changes
—

no_such_step
-owl MI

FIGURE 6. Stimulus Response diagram for the manager interface

REFERENCES

11 Badr Salah. "A Model and Algorithms for a Software Evolution Control System'', Ph. D
Dissertation. Computer Science Department, Naval Postgraduate School, December 1993.

I 21 Dampier D., Luqi, "A Model for Merging Software Prototypes", Technical Report. NPS CS-92-014.

3 I Feiler P. H., "Configuration Management Models in Commercial Environments-, Technical Report

CMU-91-TR-7, ESD-91 -TR-7. 1991.

1 4 1 Feldman S. I., "Software Configuration Management: Past Uses and Future Challenges" Proceedings
of 3rd European Software Engineering Conference. ESEC '91. Milan. Italy. October 1991

1 5 1 Hong K. and Leung J., "On-Line Scheduling of Real-Time Tasks" Real-Time Systems Workshop,
May 1988.

1 6 1 Kaiser G. E., and Perry D. E.. "Workspaces and Experimental Databases: Automated Support for
Software Maintenance and Evolution". Proceedings of IEEE Conference on Software Maintenance
1987. pp. 108-114.

C E 4 352 Proceeding of the 1st ICEENG conference, 24-26 March, 1998.

1 7 1 Kaiser G. E., and Perry D. E.. and Schell W. M. "Infuse: Fusing Integration Test Management with
Change Management", Proceedings of the Thiteenth Annual International Computer Software &
Applications Conference, Orlando. FL, September 20-22. 1989.

8 1 Lie A. et al. "Change Oriented Versioning in a Software Engineering Database", Proceedings of 2nd
International Workshop on Software Configuration Management. Princeton, New Jersey, Oct.
24.1989. pp. 56-65.

9 j Linn, "A Graph Model for Software Evolution". IEEE Transaction on Software Engineering. Vol. 10

NO. 8. Aug. 1990. pp. 917-927.

10 1 Mostov I., Ling, and Hefner K., "A Graph Model for :;oftware Maintenance'', Tech. Rep. NPS52-90-
014. Computer Science Department, Naval Postgraduae School. Aug. 1989.

11 1 Perry D. E., and Kaiser G. E., "Infuse: A Tool for Autonatically Managing and Coordinating Source
Changes in Large Systems", Proceedings of the 1987 ACM Fifteenth Annual Computer Science
Conference. St Louis, Missouri, February 1987. pp 292-2)9.

12 1 Ramamntham K., Stankovic J. A.. Shiah P., "Eflicieu Scheduling Algorithm for Real-Time
Multiprocessor Systems", COINS Technical Report 89-:7, Dept. of Computer and Information
Science. University of Massachusetts. 1989.

1 13 j Simmonds Ian. -Configuration Management in the PACT Software Engineering Environment-.
Proceedings of 2nd International Workshop on Software Configuration Management. Princeton, New
Jersey, Oct. 24,1989. pp. 118-121.

1 14 1 Silherschatz A.. Stonebraker M.. and Ullman J., "Data3ase Systems: Achievements and
Opportunities", Communication of the ACM, October 199I/Vol. 34. No. 10. pp. 110-120.

[15 j Sommerville Ian "Software Engineering". Fourth edition, Addison-Wesley 1992

1 16 1 Stankovic J. A., Ramamritham K.. Shiah P., and Zhao W.. "Real-Time Scheduling Algorithms for
Multiprocessors". COINS Technical Report 89-47.

1 17 I Tichy W. F.. ''RCS- A System for Version Control". Software Practice and Experience. VOI.. 15 (7).
July 1985. pp 637- 654.

18 j Tichy W F., "Tools for Software Configuration Management". International Workshop on Software
Version and Configuration Management-, (irassati. FRG 27-29 January 1988.

191 William B. Franks, C. J. Fiix. and 13. A. Neuneh, "Software Engmeenng in the I1N1X/C
Environment". Prentice Hall 191)1

20 1 Xu ha.. "On Satisfying Timing Constraints in Hard-Real-Time Systems". IEEE Transactions on
Software Engineering, Vol. 19. No. I. January 1993.

1 21 1 Xu 7ia., "Multiprocessor Scheduling of Processes with Release Times, Deadlines, Precedence, and
Exclusion Relations". IEEE Transactions on Software Engineering. Vol. 19, No. 2. February 1993.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

