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ABSTRACT 

The actual noise environment is often non-Gaussian in nature. In this case, the 
conventional detector (CD) based on the Gaussian assumption suffers significant 
performance degradation. To avoid such degradation, an asymptotically optimum 
detector (AOD) is used. The structure of the AOD is based on an asymptotic 
expression of the log-likelihood ratio and the functional form of zero memory non 
linearity (ZMNL), which depends on the noise statistics. In this paper, we calculate the 
functional form of ThINL for three different probability density functions (Gaussian, 
log-normal, and Weibull distribution). The structure of the AOD has been introduced 
when the probability density function of the noise is either unknown or known. This 
structure can be used to improve the radar performance. 

1. INTRODUCTION 

In practice, the echo signal from a target in motion is almost never constant. 
Variations in the echo signal may be caused by meteorological conditions, the lobe 
structure of the antenna pattern, or equipment instabilities. But the chief source of 
fluctuation is that of variations in the target cross section. This fluctuation is referred to 
the target scintillation. That is, the radar cross section vary randomly every time the 
target is illuminated and may occur between pulses or between scans. 
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The actual noise environment is often non-Gaussian in nature [1]. Accordingly, 
conventional detectors based on the Gaussian assumption, when operating in non-
Gaussian environments, suffer significant performance degradation because of the 
large tails of the non-Gaussian distributions, which determine higher false alarm rates. 

The strategies for detection in non-Gaussian interference, can be categorized into: 
1- distribution-free non parametric detection, such as median detectors, rank detectors 
[2-4]; 
2- distribution-constrained locally optimum detector (LOD) [:5,6] or asymptotically 
optimum detector (AOD) [7,8]. We concentrate our attention to the AOD category. 

2. DESIGN OF ASYMPTOTICALLY OPTIMUM DETECTOR.  

Consider the case where multiple observation are available at the receiver input 
in the form of signal samples, if a target is present, plus additive noise samples 
independent of each other and the signal, so that the hypothesis testing problem to be 
solved is 

110 :r1 =n;; 	 (1) 
riA  = Ai Si +ni ,1 = 1,2,....,N 

. 

where, 
A = It; exp(-j0i) is the ith sample from the complex envelope of the received signal, 

ni is the ith sample from the complex envelope of the noise (assuming that the 
variables niA  are independent and identically distributed I.I.D.), AiAs: is the ith sample 
from the complex envelope of the useful received signal, modeled as a product of a 
known shape factor siA= Siexp(-j (pi) times a random amplitude factor Ai% and siA  is the 
ith sample of the complex envelope of the transmitted signal. 

The factor A's  accounts for fluctuation of the phase and/or the amplitude. 
Precisely, if the useful signal is an incoherent non-fluctuating train, then A: is given 
by: 

AiA  =A exP(jTi) 
	 (2) 
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where, the 
independent 
from scan to 

amplitude A is a known constant amplitude and the phases 	are 
random variables uniformly distributed in (0,2n). If the trains fluctuate 
scan, then the amplitude A is a random variable and is expressed as: 

A=Arms 

where, Amis  is the root-mean-square value and is a random variable with unit root-
mean-square value representing the normalized amplitude. 

If the trains fluctuate from pulse to pulse, then A: will be written as: 

Aim  =A„,,, E,i exp(-jklii) 	 (4) 

where, 	i=1,2,...,NI are independent identically distributed random variables 
representing the normalized amplitudes, Arms is the common root-mean-square value of 
the amplitudes. For fluctuating trains, the asymptotically expression of the log- 
likelihood ratio (LR) i s given by: 

N 

YN(R / 	 I/ VN. 	 +aN(R,A„„s) 
1=1 

where, c is the energy of the squared envelope of the useful signal, g(R) is the function 
form of 2',MNL, which depends on the noise statistics and it is given by: 

g(R) = 1 / 4h(R).{d2h(R)/ dR2  +1 / R. dh(R) / dR) 	 (6) 

where, h(R) is the probability density function (PDF) of noise, I is the noise power at 
the function form of ZMNL and it can be interpreted as an efficiency factor, which is 
given by: 

I = E{g2 (R) / H.}. 
	 (7) 

Thus, the asymptotic expression of the LR is given by: 

LN  (R) = E{exp(y N  (R / t))). 
	 (8) 

An asymptotically sufficient statistic for all fluctuating models is the variable: 

(3) 

(5) 
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DN (R)= 1/ -.1FT. 
1=1 

	 (9) 

This statistic is compared with the threshold level to decide whether the target is 
present or not. 

2.1 Structure of A.O.D 

The structure of the A.O.D., as shown in Fig.1, requires processing of the 
envelope detector by g(.) law rather than the quadratic law used in the conventional 
detector. 
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Fig.1 The structure of A.O.D. 

2.2 Calculation of the Function Form of ZMNL 

In this way, the function form of ZMNL has been calculated in three cases. The 
first case, when the marginal PDF of the noise component is assumed to be Gaussian, 
as given by eq.(10). 

h(R)= 1/ 27c.02 .exp(-R2  /2a2 ) 	 (10) 

where, & is the common variance of the noise quadrature components. Takesda-  g the  
first and second derivative of eq.(10), we get 

h.(R)-- -1/ 21t.a 2 .R /a2 .exp(-R 2  

h-(R)= -1/ 2n.a4.exp(-R / 2a2 )(1- R2  /a2 ), 	 (12) 
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respectively. Substituting by eqs.(10,11&12) into eq.(6), we get the function form of 
ZMNL: 

g(R) = 1/ 2a2 (R2  / 2a 2  — 1). 
	 (13) 

It is obvious that g(R) is equivalent to the conventional square law, but the only 
difference is the presence of a bias term, which is required in the AOD approach. 

The second case, when the marginal PDF of the noise component is assumed to 
be log-normal distribution, as given by eq.(14) [9]: 

h(R) = exp{-1n(n.R / 	/ ln(m)} /27tVnln(m).R 2 	 (14) 

where R is the r.m.s envelope, and m is the mean to median radar cross section. 
Taking the first and second derivative of eq.(14), we get: 

• (R) = —OR 2  / 2t.t —1/ x.R3.1F, 	 (15) 

h 	(R) = 	— (1-30 / (2112  / f2R 2 ) + SZ/ Lift +3/ (rxR 4 ). 	 (16) 

respectively. Substituting by eqs.(14,15 &16) into eq.(6), we get the function form of 
ZMNL: 

g(R) =1/ R2  {(1 + 	/ ln(m) —1/ (21n(m))} 	 (17) 

where, 

• = ln(,n).R/R,„,„; 

X = limin(m); 

= exp(—g 2  / ln(m)); 

= (2g2  / ln(m)R3 ). 

2p2 T / SIR 2  = 7CX ln(m).R. 

The third case, when the PDF of the noise is assumed to be Weibull distribution 
as given by [4]: 
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h(R) = (R /11)a-1  exp(-(R / 
	 (18) 

where a > 0, f3 > 0, and R> 0. Taking the first and second derivative, we get: 

(R) = 	. R 2(a-1) .40 +(a. - 1).Ra-2 .4), 	 (19) 

h (R) -a213 1-3a 	4,-2a(a -1)13 1-3a  R2a-3  + a(a. - 013-a  R 2a-3  4)1- 
(20) 

(a -1)(a - 2) Ra-3 .4), 

respectively. Where, cli=expeR13'). Substituting by eqs.(18,19 &20) into eq.(6), we 
get the function form of ZMNL: 

a2R 20-2a _ ocRava 4.  pa-1 ).  
g(R) = 1 / 4R 2  {a(a - 2)r-1  + oc(a. - 1)Rafil  - 2a(a -1)Ra(3-2a  + 	

(21) 

Let a =2, (3 =2, therefore, 

g(R) = 1 /16R 2 (R4  +R 2  +4). 	 (22) 

Moreover if the PDF of the noise is unknown/ known, therefore, the structure 
of the AOD is shown in Fig.2 and Fig.3 respectively. In Fig.2, the envelope detector 
output is sampled and these sampled data is stored in a memory unit, the joint PDF of 
the noise is calculated, and then the marginal PDF of the noise. The function form of 
ZMNL g(R) is calculated by special purpose computer. Finally the statistic DN is 
calculated and compared with the threshold level Et , to decide whether the target is 
present or not. 

Fig.2 Structure of AOD with unknown PDF of noise 



• 
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In Fig.3, the envelope detector output is sampled and these sampled data is 
applied to analog to digital converter (ADC). The output from the ADC is then applied 
to a special purpose computer, which calculates the function form of ZMNL g(R). 
Hence, the function form of ZMNL is applied to digital to analog converter (DAC). 
Finally the statistic DN is calculated and compared with the threshold level Et , to 

decide whether the target is present or not. 

Envelope 
detector 

E, 

Fig.3 Structure of AOD with known PDF of noise 

3. ASYMPTOTIC PERFORMANCE 

The asymptotic statistic of the decision variable DN is given by: 

N(0, I), 

H1  :Dr 	N(I•Ji, I), 
(23) 

where N denotes the normal distribution. Therefore, the asymptotically operating 
characteristics in terms of both the probability of false alarm Pfa and the probability of 
detection. Pd are giver by: 

Pia = Q(Et 
	

(24) 
Pd = 1  — Q('N 	E t  ) 

where, Q(Et) is the probability that a standard Gaussian variant exceeds the threshold 
Et  . Define the signal to noise ratio as: 



Proceeding of the 1s` ICEENG conference, 24-26 March, 1998. 
	FRO 380 

9i= A' ics2 , 
	 (25) 

therefore, the energy when N diverges can be expressed as: 

= 
	 (26) 

The probability of detection Pa in terms of the signal to noise ratio is given by: 

Pd  = Q(91 X17, —Et) 	
(27) 

where, I n is the normalized improvement factor given by: 

In  = 	 (28) 

The efficiency factor given by eq.(7), can be calculated for the ZMNI., of eq.(17), 

I = m6 (1+ 21n(m-1) + 0.51n(m-2)}/R,Ths. 	 (29) 

Therefore, we simulate the calculation of the probability of detection of 
scintillating targets for different probabilities of false alarm. Figure 4 shows a 
comparison between the probability of detection for scintillating targets, by using the 
AOD, immersed in non-Gaussian and that immersed in white Gaussian noise. It is 
found that the former is better than the latter by about 1.1%. 

4. CONCLUSION 

The calculation of the function form of zero memory non linearity for three 
different probability density functions, namely, Gaussian, log-normal, and Weibull 
distribution, has been introduced. Moreover, It has been introduced a structure of the 
asymptotic optimum detector for unknown and known probability density functions. 
This structure can be generalized to improve the detection process of the western radar 
station, when the targets are immersed in non-Gaussian interference. 
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Fig .4 Probability of detection vs signal to 
noise ratio for scintillating targets 
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