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Abstract- This paper presents a new approach for 
classifying radar targets through the fractal anal∎  sis 

their radar echo. Radar target echo and clutter 
models have been generated from Rayleigh and 

distributions. 	
oth target and clutter signatures have shown fractional Brownian motion behavior. Th: 

radar echo of a target varies basically according to radar target cross section (RCS) and more speciticall
s  

according to the size. and geometric shape of the target. Those variations have been efficienti
∎  capturor 

and abstracted in term.; of average holder constant. Radar target echo and clutter have also 
bee t  

transformed into invariant symmetrized dot pattern.  (SDP) plot, where a correlation coefficient 'actor . h. 

has been computed. The two features, average holder constant and R have been presented to a multi-

resolution :neural network to classify -seven types of aircraft in the presence of clutter. The multi-resolutio1 

neural net is composed o:'three sub-nets. each sub-net is a three-layered neural net with a back prJpal:atii .1 

learning, algorithm. 	
Conclusive classification results have been obtained and analyzed in term. 

confusion matrix format. 
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I -Introduction 
The main objective of this paper is two folds. the first is to provide a new estimation or a radar 

section (RCS) through the Fractal analysis and computation ofaverage holder constanu AIR') 
target echc. the second is to classify radar targets using a muld-resolution neural net classifier \\ ith  

input features, the first is the AHC and the second is the correlation factor. R. of SDI' plots or each tar :i 

echo. The important properties of fractal signal models, which enable them to be modeled 
self similarity and statistical invariance over wide ranges of scales. One of the most usefirl mathematic, 
models for the random fractal signal has been the fractal Brownian motion (tBm) of Mandelbrot and 

Ness. It is an extension of the central concept of Btownign motion that has played an important rule in hot 

physics and mathematics el]. A fractal Brownian funcnon. VII 	< H < I. is a single valued runctiim 

one variable, t (usually time). When H is close to 0 the traces are roughest while as H approaches I . trace ,  

are relatively smooth. H relates the typical charge in V, AV = V(12)- V(t l). to the time di 	L:11( 

. At = t2 - 	by the simple scaling law [I]: 

AV cc At 
H 

whereas the self similar snapes repeat (statistically or exactly) under a magnification. 
statistically only when the t and V direction are magnified by different amounts. 

factor r(t becomes rt.). then V mast be magnified by a factor r 
The variance of variations is proportional to the increment value as [I] : 

"-) H 6 KAI") cc ( At )- 

R G. 2 383  

the !Dm traces repc,r 
If t is ma ,,.milied 

( V becomes i' 
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The variations of a fBm Viritf)— Iin t, - i) has a Gaussian distribution each wilt yariance [ I ]: 
ff) 	 12 

	

( 1'1-1(t — rfl(t(— 1)) x (ti 	t — 

then 	the 	standard 	deviation 	of 	the 	variations 	can 	be 	written 	as 

(1.
H1 

— V
H

(t _1)) ‘-c (t1 — t — 1)
H 	

(4) 

this relation is known as T
H 

law where T
H 

= 	— 
The fractal dimension D. is a real value greater than the topological dimension E. The relationship betyyec 
D. E. and the roughness measure H is given by: D = E-(1-H. For one dimensional .1-B. signal such as 
noise. E=1, 	 For two dimensional. 2-D. signal, E=2. D=3-H. [1]. 	The fractal dimension - 
considered scale-. rotation-, and translation-invariant. A second fractal fea:ure is the a' erase hull. t 
constant (A.HC) which is related to the fractal dimension (D) but is sensitive to the scale in prediefah 

manners. Let T be the spacing of a sequence of points, and let f6,6 .,1 =-11/:1, 	*(1,_, ), Then for a  

I * H (1) • the local holder constant is given by : 

Log( AV1) 

  

Log(T) 

The AHC, for a fBrn function I'H (t) can be computed from (5) as follows 

Log( 4) 
= avg(a.) = avg 	 
 i 	Log(T) 

Symmetrized dot pattern (SDP) is one of the most striking and colorful data display techniques fy hi. - 
produces figures with the six fold symmetry. Thc clue is to convert data in o a collection 	dots YY hicH 
reflected through mirror planes by a simple computer program. To implemeia the symmetrized dot palter. 
starting with a digitized wave, the data is mapped in to a snowflake like pattern Dy.  compari 11 t2 each pair 
adjacent points, and plotting the result on a polar coordinate graph, and then reflecting the points throu..:11 
mirror plane.. SDP plot is also considered to be scale-. rotation-. and shift-inY a-jam. 121. 

Radar target is described by an effective area called the radar cross section -area .RCS. It is ;he proiectd 
area of an equivalent sphere which would return the same echo signal as the tar,2et. An object exposed 
an electromagnetic wave disperses incident energy in all direction. This ddarib Anon of 	in space  
called scattering. and the object itself is often called the scatterer. The energy scattered hail. to the suttre 

of the wave. called (hack scattering) constitutes the radar echo of the object. The intensity of the ech,, 
described explicitly by the radar cross section (RCS) of the object. The formal definition of 	.S is gi 

f-31: 

2 111: s. 

	.7r2. 	[-) 
■E6 

where Et)  is the electric-field strength of the incident wave impinging or the target. 	is the elect Hi.  

field strength of the scattered wave at the radar, and r is typically taken to be the range from the radar to CIL. 
target The dependence of the RCS on r. and the need to form the limit, usually disappears 

From the study and analysis of the radar target echo, it has been found that they reflect sinistical st. 
similarity . This feature invited us to study the IT3m behavior oldie radar echo signals for different targe•s 

a1  — 

[2): 

=-h Rl 	4 ,T 
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Radar echo signals for different targets (bombers, fighters,...) have been simulated as a Rav!ei ,  

distribution according to their RCS values. Clutter signals have also been simulated as a 
distribution [3,4]. The fBrn behavior of both radar target echo signals and clutters have been shown throug:1 

the verification of the T 11 law in one hand and the normal distribution of the variation histogram ol 
other hand [5]. Proposed average values of RCS's. in square meter, for different types of targets arc shi., %\ 

in table 	[6]. 

Broad Class Of Targets verage RCS 

Single engine fighters 1 
Small fighters 2 to 3 
Large fighters 5 to 6 
Small bombers 10 
Medium bombers 40 
Large bombers 80 
Cargo >= 100 

2-Radar Echo Generation 
Although there are few cases in which the RCS values are constant. it will generally vary considerahi 
each target as the change of the aspect angle of the target shape, and the radar frequency. These chang:: 
force us to use statistical methods to describe the radar target [3.4]. 	In his classical paper on tag..1 
modeling, Peter Swerling established four statistical models for radar targets PI. The Swerling 
easel is the fluctuatilg target most frequently used for calculation. It is a description of a colle,:ti , im 
many independently rroving scatters (Rayleigh amplitude distribution). 
2-1 Target Generation 
The radar echo of the target takes the form of Rayleigh distribution in Swerlinti casel [he 

probability density (pdt) and the commutative distribution function (cdt) are given by. [3.4] 

.r) = 	.0* exp[—(.v x)]. 	 N 

F(x) 	 - exp[—(x ! x)] 

where x is the Rayleigh random variable. x > 0 and x denotes the mean RCS value. A Ra leigh ntr,io 
variable can be generated as follows : 
Set F(x)=1.J. Solve for x 	terms of . Then x can be written as : 

x = 	(.1).r• 
where L' is a uniform random number. Fig. 1 depicts a generated Rayleigh random variable tOr target ee l  

kNith RCS = 10 n1 
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fable 1 • The Average RCS Of Targets 

Fig. 1 : generated echo for target with RCS=10 
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2-2 Clutter Generation 

   

According to Swerling - casel. some clutter take the form of Weibul distribution. The pdf and cdf 
Weibul distribution in its general form is given by [3,4] : 

bx -bx' e'r 	> 0 

0 	 x=0  

F(x) = [1 — exp(—x / a)h ] 	 , 
\\ here  a. b>0 are the scale and shape parameters respectively. A random Weibull \ ariahH car  
generated as follows : 
Set F(x) U, then x can be written'as: 

x = —Ln(1 — (1)11  a 
The pdf and cdf for clutter can be described as: 

I (x) = 1b1(2)b(x)" exp(--(In(2)).x''l 	 , 

F(x) = 1— exp(—Ln(2).‘:'') , 

and the Weibull random variable. x can be written as follows : 

Ln(l — U). (1/h) 
 

Ln(2) 

FL:. 2 depicts a generated Weibull random variable for clutter with b-0.3 
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Fig. 2: Generated echo for clutter with b=0.3 

The verification of the 113m behavior for rzKlar tari,et echo and clutters are shown in lig (3 to 	Wher.: th 

T'" plots reelect linear relation. and the variation histogram depicts Gaussian distribution. 

f = 



Proceeding of the ICEENG conference, 24-26 March, 1998. 

700 

600 

500 

400 

300 

200 

100 

0 
CO 4— CD  

In 4cr CD f-- 	-D 	CI 

50 • 

50 	 I00 	 150 

I og (t ) 

3 . TH n veficatior for target with 
RCS=10 meter square, RMSE=0.59 

Fig. 4. Histogram for target with RCS-1f I 

  

Fig. D. T " verification for clutter 
	 Fig. 6. Histogram verification for 

with b-0.4,RMSE=2.49. 	 clutter with b=0.3. 

3-RCS Estimation 
A main focus of this research effort is to provide an estimate of radar target cross section through fraet..: 

analysis of radar echo. The average . holder constant of the 1-1301 traces provides an important informati.. 

about the rature of the target. and more specifically size and shape [5.6.71. The AHC has been coinl,ut.,•.! 

for 120 radar targets and clutters of different RCS's. For 100 generations of each target and clunc•'. 
region of the curve containing RCS values of targets of interest has been magnified as shown in t 	- 

The RCS estimate can be abstracted in terms of 5th order polynomial of the following form 
2 

RCS = 0.006 * ( .4HC )
5 	

4HC)
4 

- 0.0327 * .4HC) + 0.457 * .414C 	1.9514 ": .411C - 

The proposed RCS estimate has been successfully tested and validated over IOU tar2et 
proposed RCS estimation method has achieved 5 % error percentage and 8.26 root mean squ.ir,: err r 

between input RCS and estimated one. 
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Fig. 7 : The relation between AHC and RCS (multiple running) 



RCS=100 R=0.7611 
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4 -SDP Plots For Targets And Clutters 

SDP plots for targets of different RCS's and clutters of different b parameter are ploted in FkI .ti and 
Fig.9 respectively [2.7]. The SDP patterns have been plotted using 1(00 points for each echo. 
correlation coefficient R for each SDP plot is computed as the number. of displayed points divided h the 
total number. of points according to screen resolution. As the correlation among the points becomes Itme!. 
R values become higher and vice versa. SDP patterns provide a qualitative ard quantitative measures 
target types in terms of SDP plot display, and the correlation coefficient. R It can be notic.:(i that elute:› 
have lower correlation coefficient, R. and as b parameter gets higher. SDP plots for dune's approach SDI 
plots for target. 

Fig. 8: SDP plots for targets with different RC`; 

6=0.2 R=0.083 b=0.6 b=0.8 R-0.203 b=0.99 

'?" 1 

R=0.380 R=0.223 

Fig. 9: SDP for clutters with di tierent b 

5-.Vearal Net Classifier 

[he block diagram of the proposed multi-resolution neural net classification scheme is slitmn 	I 
The first layer, the general class subnet, classifies input samples to four major classes: .:tirgo. bomber-. 
fighters. and background clutter. The second layer consists of two neural sub-nets. The first 1nte S used Ii 

classifying specific tighter types (large fighters as F-15, middle tighter as 1-16, small tighter as 	I 	■ 
The second subnet is used for classifying specific bomber types(large bomber. middle bcmbe:•. 
bomber). Each subnet (bomber. fighter) is activated by an enable inpu: from the general class stains. 
where the two input features (AF1C. R ) are available as input for the activated neural subnct. kig. 
c) depicts the three neural subnet architectures. Each subnet is composed of three lavers_ and adopts a bae 
propagation learning algorithm [8]. Fig.12 depicts graphical representation of rte feature space. w here th,. 
hack ground clutter class occupies the bottom area. and the other seven c kisses of targets: 	fightel. 
middle tighter, large tighter. small bomber, middle bomber, large bomber. zuld ecrgo occupy the upper 
of the graph from left to right respectively. 
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Fig. 10: Block diagram of Neural Classifier 

Fig. I I .a. General Class Subnet 	Fic1.11.b Bombers Subnet 
	 11.e. Fiiilltors 

Fiu. 12. Graphical Representation Of Feature Space 

The perfolmance of the proposed multi-resolution classification scheme has been tested and an,ii 

Test results are summarized in the confusion matrix shown in table 4. where samples of each c1,1;.; 	. 
been presented to the clas:, ifier 100 times [7]. The average value of the percentage of correct recogniil.iii 

88N. The recognition ra:e for each class is computed as the number (A- times the 

specific class with respect :o the 100 presentations . For example, the classifier outputs 

131 times. 
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Table=! : Confusion matrix of the classifier 
Small 
Fighter 

Middle 
Fighter 

Large 
Fighter 

Small 
Bomber 

Middle 
Bomber 

Large 
Bomber 

C; rgo Clutter Recognition 
Rate 

Small Fighter 81 0.81 

Middle Fighter 18 68 0.86 

Large Fighter 31 100 1.3' 

Small Bomber 89 0.89 

Middle Bomber 11 68 0.79 

Large Bomber 32 100 1.32 

Cargo 1(.0 1 

Clutter  100% 1 

unclassified 1 1 0.02 

Correct 
Recognition % 

81% 68% 100% 89% 68% 100% 1CO% 100% 

6. Conclusion 
The proposed approach presents a new reliable method for radar target classification based on the traot .! 

estimation of the radar cross section. The average holder constant for each signal has been used to pr o\ to: 
an estimate for target RCS. The correlation factor, R, of SDP plots along with RCS estimates for tao , eH 
and clutters have been used to classify samples from eight target classes. Tle proposed ;Acme can 

used in a. wide spectrum of military applications, especially reconnaissance and earl. \varnin- 
s \ stems. 
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