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Abstract- This paper presents a new approach for classifying radar targets through the fractal analysis o |
their radar echo. Radar target echo and clutter models have been generated from Ravleigh and Weibu!
distributiors.  oth target and clutter signatures have shown fractional Brownian motion behavior. Th:
radar echo of a target varies basically according to radar target cross section (RCS) and more specificalhy
according to the size. and geometric shape of the target. Those variations have been efficientiv capture.
and abstracted in term: of average holder constant. Radar target echo and clutter have also been
transformed into invariant symmetrized dot pattetn (SDP) plot, where a correlation coefficient factor . R
has been computed. Tkz two features. average holder constant and R have been presented 1o @ nulti-
resolution neural network to classify seven types of aircraft in the presence of clutter. The multi-resoluto.
neural net is composad o three sub-nets. each sub-net is a three-layered neural net with a back propagatien
learning algorithm. Conclusive classification results have been obtained and analvzed i terins ol

confusion rnatrix format.

Key words: Fractional Brownian motion, radar target echo. clutter, symmetrized dot patterm. averay.
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]-Introduction

The main objective of this paper is two folds. the first is to provide a new estimation ol radar v
section (RCS) through the Fractal analysis and computation ofaverage holder constant | AHC) o snd
tarset eche. the second is to classify radar targets using a muki-resolution neural net classiticy with v
input features, the first is the AHC and the second is the correlation factor. R. of SDP plots of cuch targ 1
echo. The important properties of fractal signal models, which enable them to be modeled so simiph "
self similarity and statistical invariance over wide ranges of scales. One of the most usciul mathematic: |
models for the random fractal signal has been the fractal grownian motion (fBm) of Mandelbrat and Vin
Ness. [t is an extension of the central concept of Brownisn motion that has played an important role m boi s
physics and mathematics "1]. A fractal Brownian funeon, Vi (1), 0 < H < 1. is a single valued function ol
one vari;b e, t(usually time). When H is close to 0 the traces are roughest while as H approaches T traces
are relatively smooth. H relates the typical chage in V. AV =V(2)-F (D). tothe time diffciend

. A1 =12 —1} by the simple scaling law [1]:
AV o« At i [
whercas tle self similar snapes repeat (statistically or exactly) under a magnification. the B traces repeds

s.taustmally only when the t and V direction are magnified by difterent amounts. It 1 1s magnificd by
factor r(t  becomes rt). then V mast be magnified by a factor ' ( V becomes 70

The variance of variations is proportional to the increment value as [1]:
.

=

2
o7 (AV) o« (A1) -
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[he variations of a tBm Far) — Vet - 1) has a Gaussian distribution each wili variance [1]:

2. o , ot
o (I’H([[)_LH([['_l))7:(_[!'*[[7]) ' s
then the  standard deviation  of  the  variations  can = bg written  as Hl
. : H
a “H((;.)“I‘H({,‘_l)) L lti—ti-1) (+)

this relation 1s known as TH law where TH ={ti— 1) [)H

The tractal dimension D. is a real value greater than the topological dimension E. The relationship betwed
D. E. and the roughness measure H is given by: D =E+1-H. For one dimensional ./-0. signal such s
noise. E=1.D=2-H.  For two dimensional. 2-D. signal. E=2. D=3-H. [1]. The tractal dimension -
considered scale-. rotation-. and translation-invariant. A second fractal teature is the everage holldy
constant (AHC) which 1s related to the tractal dimension (D) butis sens tive to the scale in ,mmu'.sh :

Al 1:'I LY== Then fora B

! |

mannars. Let T be the spacing of a sequence of points, and le

I‘H(r) the local holder constant is given by
|
Log(|aV:)
o = — 5
Log(T)

The AHC. fora fBm function f'H(t) can be computed from (3 as follows. [2]:

‘ Log(|AT:])
1
C[‘(!\(’C[)—Cf\vr —— | 1

{ i l Lou( T |

L 4
Svmmetrized dot pattern (SDP) is one of the most striking and colorful data display techiques whic
produces fizures with the six fold symmetry. The clue is to corvert data inso a collection ot dots whieh

tetlected through mirror planes by a simple computer program. 1o implemert the symmetrized dot parter
starting with a digitized wave. the data is mapped in to a snowtlake like patiern sy comparing cach par o
adjacent points. and plotting the result on a polar coordinate graph. and then retlecting the points throuzh
mirror plane.. SDP plot is also considered to be scale-. rotation-. and shift-inva-ant. [2].

Radar target is described by an etfective area called the radar cross section area .RCS. 1Uis the projecte
area of an equivalent sphere which would return the same eche signal as the tarzet. An object exposed
an electromagnetic wave disperses incident energy in all direction. This distribation of encruy in spuce
called scattering. and the object itselt is otten called the scatterer. The encray scattered back to the sourc.
of the wave. called (back scattering) constitutes the radar echo of the object. The intensity ot the ceho s
described explicitly by the radar cross section (RCS) of the object. The formal detinition of RUS 15 i
by [3]:

where gy is the electric-tield strength ol the ncident wave impinging or the target. g s the clectn
field strength of the scattered wave at the radar. and r is typically taken to be the range from the radar to .
target. The dependence of the RCS on r. and the need to form the fimut. usually disappeurs | 5.4

1
Y.

From the study and analysis of the radar target echo. it has been found that they reflect satisticat s
similarity . This feature invited us to study the MBm behavior of the radar echo signals for difTerent taree
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Radar echo signals for different targets (bombers. fighteis...) nave been simulated as E\Ln}.c:__’
distribution according to their RCS values. Clutter signals ha\‘e also been simulated as a \Weibul
distribution [3,4]. The fBm behawor o7 both radar target echo signals and clutters have beer shown throug

L,

H ,
the verification of the 7' law in one hand and the normal distribution of the variation histogram o1t
other hand [5]. Proposed average values of RCS’s. in square meter. for different ty pes of targets we ~how -

in table ©, [0].
Table 1 : The Average RCS Ot Targets

Broad Class Of Targets verage RCS
Single engine fighters 1

Small tighters 2103

Large tighters 5t06

Small bombers 10

Med:um bombers 40

Large bombers 80

Cargo >= 100

2-Radar Echo Generation
j\lthouuh there are f2w cases in which the RCS values are constant. it will generally vary conside rabiv 1
each target as the change of the aspect angie of the target shape, and the radar tfrequency. These changos

force us to use statistical methods to describe the radar target [3.4].  Inhis classicul paperoni ‘
modeling. Peter Swerling established four statistical models for radar targets [4]. The Swerling mod

casel is the fluctuatizg target most frequently used for calculation. Itis a description of “aeollecton
many independently moving scatters (Rayleigh amplitude distribution).

2-1 Target Generation
The radar echo of the target takes the form ot Rayleigh distribution in Swerling casel. The Ruvier
probability density (pdf) and the commutative distribution function (cdf) are given by. [3.+4]

Fx) =il /vy *exp[—(x /0. (N

F(x)=1-=exp[=(x :)] .
where x is the Rayleigh random variable. x>0 and xdenotes the mean RCS value. A Rayleigh rardo
variable can be generated as tollows :
Set F(x)=U. Solve for x 11terms of . Then x can be written as :

x=—-Lal-U ,).\‘- :

where U is a uniform random number. Fig. | depicts a generated Ravleigh random variable tor tarect och

aith RECS = 10w~

R
Fig. | : generated echo tor target with RCS=10 m~
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222 Clutter Generation
According to Swerling - casel. some clutter take the form of Weibul distribution. The pdt and cdf it
Weibul distribution in its general form is given by [5.4] :

it = )t

. [ bx~x™e . x>0 |
f(x)= )(L

X =

/

F(x)=[l—exp(-x/ u)b] pEa
where a. b>0 are the scale and shape parameters respectively. A random Weibull variahle ¢
venerated as follows
Set F(x)= U . then X can be written'as:

x=|=Ln(l- C‘)]]'//7 a i3
The pdt and edf for clutter can be described as:
Fiixy) = [LH(Z)/)(_\')” ! cxp(—(ln(l))x”} i o=
Fix)=1—exp(—Ln(2)x").
and the Weibull random variable. x can be written as follows
Ln(1-U) (1/h)

) . R
Lo 2)

X =(-

Fiz. 2 depicts a generated Weibull random variable for clutter with b=0.3

— S i

Fig. 2: Generated echo for clutter with b=0.3

e vertlication of the tBm behavior tor radar target echo and clutters are shown m tig (3 to v Where thie

7 plots redlect linear relation. and the variation histogram depicts Gaussian distribution.
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3-RCS Estimation

A main tocus of this research eftort is 1o provide an estimate of radar target cross section through ract.
analvsis of radar echo. The average holder constant of the fBim traces provides an important mformatic -
about the rature of the turget. and more specifically size and shape [3.6.7]. The AHC has been compute !
for 120 racar targets and clutters of different RCS’s. For 100 generations of each targetand cluticr. v
region of the curve contcining RCS values of targets of interest has been magnified as shown e
The RCS estimate can be abstracted in terms of 3th order polynomial of the following form

3 4 3 it .
RS = 0006 * (AHC) - 0.0:67* (4HC) = 00327 * (AHCY + 0457 * (AHC)  + 19314 7 JHC - Tunsd
The proposzd RCS estimate has been successtully tested and validated over 100 target zeneration ~ 2
proposed RCS estimation rethod has achieved 3 % error percentage and 8.26 root mean square crrer
between input RCS and estimated one. -
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Fig. 7 : The relation between AHC and RCS (multiple running)
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4 -SDP Plots For Targets And Clutters

SDP plots for targets of different RCS's and clutters of ditferent b parameter are ploted in Fig .8 and
Fiz.9 respectively [2.7). The SDP patterns have been plotted using 1000 doints tor each echo
correlation coefficient R for each SDP plot is computed as the number. of displayed points divided by the
toral number. of points according to screen resolution. As the correlation anong the points becomes fowe
R values become higher and viceversa. SDP patterns provide a qualitative ard quantitative meusures |
target tvpes in terms of SDP plot display. and the correlation coefficient. R It can be noticad that clutic::
have lower correlation coefficient, R. and as b parameter gets higher. SDP plots tor clutters approach S0
plots tor target.

Res=5 R=0.8159 Ris=10  R=0.8851 RCS=50 Fg:[]_j'551 rts=100 R=0.7611

Fig. 8: SDP piots for targets with different RCH

j i
| b=0.2 R=0.083 b=0.6 R=0.223 b=0.8 R=0.203 b=0.95 R=0.380

Fig. 9: SDP for clutters with difterent b
J-Neural Net Clussifier

[he block diagram of the proposed multi-resolution neural net classification scheme s shown m iy
I'he first laver, the general class subnet. ciassifies input samples to four major classes: zarzo. bontbes
fichters. and background clutter. The second layer consists of two neural sub-nets. The tirst one s used o
classifving specific fighter types (large fighters as F-15, middle fighter as =16, small tighter as Nigll.
The second subnet is used for classifving specific bomber typestlarge bomber. middlc benh
bomber). Each subnet (bomber. fighter) is activated by an enable inpu: from the general cluss subie

where the two input teatures (AHC. R ) are available as input for the activated neural subnet. Fig.

S

¢) Jepicts the three neural subnet architectures. Each subnet is composed of :hree lavers. ard adepts a bacs
propagation learning algorithm [8]. Fig.12 depicts eraphical representation of the feature space. where th.
buck ground clutter class occupies the bottom area. and the other seven clusses ob targets small lighter
middle fighter, large fighter. small bomber. middle bomber. large bomber. and coreo oceupy the upper dre.

ot the graph from left to right respectively.
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Fig. 12. Graphical Representation Of Feature Space

The performance of the proposed multi-resolution classification scheme has been tested and and
Test results are summarizad in the confusion matrix shown in table 4. where samples o cach class oo
been presented to the classifier 100 times [7]. The average value of the percentage of correct recognit
88%. The recognition raze for each class is computed as the number of times the classihicr ooy
specitic class with respect o the 100 presentations . For example. the classitier outputs farge tiah
31 times.
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Tabled : Confusion matrix of the classifier

Small |Middle |Large [Small Middle Large Cirgo  [Cluiter {Recognition
Fighter |Fighter |Fighter |Bomber |Bomber [Bomber Rate
Small Fighter 81 Q8!
Middle Fignter |18 |68 08s |
Large Fighter 31 100 13 ]
Smail Bomber 89 089
Middie Bomber 11 68 079 |
Large Bomber 32 100 132 |
Cargo 1C0 ' T
Cluteer T00% |1
unclassified 1 1 __h‘ 0 O:‘y” -
Correct 81% |68% |100% |89% |68%  [100% |1€0% 100% |
Recognition % ‘ ]

6. Conclusion

[he proposed approach presents a new reliable method tor radar target classitication based on the trace !
sstimation of the radar cross section. The average holder constant for each signal has been used o provid.
an estimase for target RCS. The correlation factor, R of SDP plots along with RCS estmares [or trzets
and clutters  have been used to classity samples from eight target classes. Tae proposcd scheme can b
used in a wide spectrum of military applications. especially reconnaissance and earlv warning rado

systems.
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