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ABSTRACT 
This paper analyzes the performance of an interleaved convolutional coded BPSK with perfect channel 

state information and coherent detection, assuming perfect synchronization. Analytical results for the pairwise 
error event probability using the characteristic function technique is derived. An approximate bit error 
probability is obtained by summing the probabilities of the dominant error events. 

I. Introduction 
Most of the well known codes, including the convolutional codes, are effective when the errors caused 

by the channel are statistically independent [ I]. However there are many channels that exhibit bursty error 
characteristics [2]. Signal fading due to time variant multipath propagation often causes the signal to fall 
below the noise level, thus resulting in a large number of errors. 

An effective method for dealing with burst error channels is to interleave the coded bits in such a way 
that the bursty channel is to be transformed into a channel having independent errors. In practical systems, 
full interleaving cannot be achieved completely and a residual amount of correlation remains affecting the 
system performance. 

In this paper, we investigate the probability of error of an interleaved convolutional coded BPSK over a 
correlated multipath fading channel with perfect channel state information (CSI) and coherent detection. 

The rest of the paper is organized as follow. In sec. II, the system model is introduced and the decoding 
error is derived, In sec. III, the probability density function of the decoding error variable is derived using 
the characteristic function technique. In sec. IV, the pairwise error event probability is obtained. The bit 
error probability is given in sec. V. Conclusions are drawn in sec. VI. 

II. System Model 

The block diagram of the used system is shown in the Fig.!. 

Fig. I System block diagram of an interleaved convolutional coded BPSK signal over 
a correlated fading channel. 
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The input to the linear convolutional encoder ( n,l, v) is a sequence of binary digits given by 

a = ( al, a2, 	ak, 	 ) and its corresponding output is 

b = (b,` ,b,2  ,...,b," ,b2 I  ,b22 	 ,...,b," , 	 (1) 

To simplify the analysis we use the transformation 
k = (j —1)* n+i 	

(2) 

and therefore, the encoder output can be represented by a binary codeword c of length M i.e., 

=( 	 CM) 

In order to disperse possible deep fades in the channel, the codeword c is passed to a block interleaver 

with a buffer of size a rows and fi columns where fl is the interleaving depth, and a x [3 = M. The binary 

symbols in the codeword c will fill the interleaver buffer column by column, while the output sequence of 
the interleaver is obtained by reading out the contents of the buffer row by row. The interleaver output 

sequence is 

C 	, 2 	,•••,Cm 	
(4) 

C 

The ck' s are fed to a pulse shaping filter at a rate of 1/7' symbol per second. The impulse response of the 

filter is A p(t) where A is a constant representing the signal amplitude and p(t) is a unit energy pulse. We 

assume that the concatenation of p(t) and the receiver matched filter is a pulse that satisfies the Nyquist's 

criterion for zero intersymbol interference. The transmitted signal is 

S(t) A E c, 141' — kT) 	 (5) =--  
k=1 

and the corresponding received signal is 

r(t) g(t) s(t) + n w(t) 	
(6) 

=--  
where g(t) is a zero mean, complex Gaussian random process and n,,,(t) is the complex envelope of the 

channel's AWGN, with double-sided power spectral density of N0  /2. The received signal r(t) is passed to 

a matched filter with an impulse response 
p*(t)/ik. The output of the matched filter is sampled at the symbol rate PT to produce the sequence 

r' = 	r2',...,rk', 	rki') . Assuming that the fading  process is slow enough that it is approximately 

constant over each symbol interval, the received signal can be written as 

r(t)= AE 
A4 
 g c „ 	— kT) +n (t) (7)  

k=1 
where gk' is the value of g(t) in the km  symbol interval. Consequently the sample rk ' can be written as 

(8)  rk U k Ck 	n 
where uk''s and tzk''s are zero mean complex Gaussian random variables representing, respectively, the 

fading and the additive noise experienced by the k' transmitted symbol. The nk''s are independent and 

identically distributed (iid) random variables with a unit variance. On the other hand, the 	are not 

independent. The autocorrelation function of the uk' 's is 

R(kT)P() 	
(9) 

N 
where R(kT) is the autocorrelation function of the fading process. For a mobile radio channel, the 
autocorrelation function R(kT) can be modeled as [3] 

(3) 
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R(kT)= exP( —Ik f ,,71) 
wherefp is the maximum Doppler frequency. The term (Es /No) is the average signal-to-noise ratio .The 

samples in the sequence r' = ( 	rk', 	rA2) are deinterleaved to produce the sequence 

r = ( ri , r2,..., rk ,..., rM) where 

rk  =7.1k  Ck + Ilk 

The uk's in eq.(11) are a set of correlated zero mean Gaussian random variables. The channel estimator as 
shown in Fig. 1 will extract information about the channel complex gains from the received signal. Let the 
sequence that appears at the output of the estimator be denoted by v' = (v2', 	,14; 	vm) • 1f we 
assume an ideal situation, the estimator provides perfect channel state information (CSI). The saniple in the 
sequence v' = (vi ', v2; ..., 	vkl) are deinterleaved to produced the sequence 	v = 	V2, •••, 

vM). Using the transformation given by eq.(2), the two sequences 

r = (r,, r2,..., rk, 	rM) and v = (v1, v2, 	vk, 	viki) are transformed back into the forms 

— (r I  r 2 	
n 	1 	2 	 1 	2 	11 	 1 	2 

r — 	, 	/.2  ,r2  , , r2  , 	,rk  ,...,rk 	TM ,rAl n ) 

and 
1 	2 	 I 	2 

V =
2 
,...,v, ,r2  ,r21 , v22 

,...,v2  , 	, V k 	.,V k 	 ,V 	,V m  ,...,V M  

The two sequences r and v are fed to the input of the Viterbi decoder[4]. The Viterbi decoder will select the 
codeword c given by 

A 	A A 	A 	A 
C = (CI  ,C2 ,...,Ck ,...,C m  

and correspondingly 
A A A 	A A A 	A 	A A 	A 	A A 	 A 

b=(b 1  b 2 '.•.'  b " ,b 	b2 2l'••1  b2  " 	 k l ' bk 2 /' / bk "  9 	 ,b,„b,2 ,...,b,,,) 
2 /  

whose metric 

A M it 

Me(b)=E El 
j=1 1=1 

is smallest. This decoding metric is optimum for coherent PSK with perfect channel state information [5]. 
If any decoded codeword c is not equal to the transmitted codeword c, the random variable 

A 
D= Me (b)— Me (b) 

M n 	 A 

*-=ZE{ri v.
J
'  (by' 

	

 — b ' 	+ r' 	J 	 1)1 	 (17) 
j=1 1=1 

is less than zero, then a decoding error will occur. The probability that D _<0 is known as the pairwise error 
event probability. 

(12)  

(13)  

A 

— v i b 12  

A 

13 



Proceedings of the rd  ICEENG Conference, 23-25 Nov. 1999 

III. The Probability Density Function of the Error Variable D 
The characteristic function technique is used to find the probability density function of the error variable 

D and also the pairwise error event probability as follows. 
Let (kb k2, , kk, 	k,) be the set of index k for which the binary coded bits 

ck Eck. L is referred to as the length of an error event while S = 	+ 1 is referred to as the span of an 

error event. For coded binary PSK with perfect CSI, the random variable D in eq.(17) written using the index 

k is 
• 	A 

D=  E ru  u k, (ck, -Ck, )+ r„ u„ (c„- CA/ ) 	
08) 

/.1 
Substituting the value of rk given by eq. (11) we get 

D=E Iz, 12 +z,n, + z „ n 	 (19) 

where 
Zr 	di , 

di  = ckl -c u
(20) 

nki , 1 = 1,2,...,L are iid complex random variables each having a zero mean and a unit variance. Eq. ( 18) can 

be written in a matrix form as 

D = zh  z + z + n 	 (21) 

where z and n are column vectors whose components are the .z/'s and nki'• and zh  and nh  are the Ilermitian 

transposes of z and n. The covariance matrix for the .zi's is 

F[ =I ZZh1=ACDAh 	
(22) 

zz 	2 -4 -- 

where E[ is the expected value and A is a diagonal matrix whose th  component is equal to d, and the 

matrix (I) is the covariance matrix for the uki's. 
For a linear convolutional code, the set of Hamming distances of the code sequences generated from the 

all zero code sequence is the same as the set of distances of the code sequences with respect to any other 
code sequence. Consequently, we assume without loss of generality that the all-zero code sequence is the 
transmitted one. Therefore the matrix A in eq. (22) will be an identity matrix with dimensional I.. 

As long as the number of rows a in the interleaver buffer is large, a dominant error event can seldom 
span two adjacent columns of the buffer. Therefore, if ck;  and cki  are two coded bits among the L bits 

constituting the error event then the complex gains uki and uki  experienced by these two symbols for mobile 

channel have a correlation equal 

(130 (k„k )= 	exp (-1(k, k i ) fi f„ 71) 
(23) 

From eq. (23) we can say that the effect of interleaving is to increase the Doppler frequency by a t'actor offi. 
Regarding the noise component it can be shown that the covariance matrix for nk's is an identity matrix of 

dimension L. 
Since D is a sum of independent quadratic forms of complex Gaussian variety, then with a slight 

modification to eq. (B-3-16) in [6], the characteristic function of D can be shown equal to 

(s) 	
/=-1 	(s-1311) (s Ai) 

	 (24) 

where Ai , I= 1,2,...,L are the set of eigenvalues of (11k, and 

14 



Proceedings of the 2" ICEENG Conference, 23-25 Nov. 1999 
	 [ACM 

191 1 

Per 

= 1 — + 
2 

1 
4 

1 	 L 
 2, 

are the poles of the characteristic function. It should be pointed out that when Ai  = 0, the term { - (s- P 1 1 ) 

(s- P21) y' is equale to unity. The probabililty density function of D, PD(d), is simply the inverse Laplace 

transform of OD(s), where OD(s) is analytic through the finite s-plane except for a finite number of poles. 

large enough so that the segment lies to the right of all of those poles, then the inverse Laplace transform 
If LR denotes a vertical line segment s= ro  + j d (-R 	...<R), where the constant ro  is positive and 

PD(d) of OD(s), defined for the real values of d is given by 

PD (d)= 1 
	

(26) 

	

2 j
.
rc 

lirafexp (sd) 	ds 

The choice of the positive number ro  is immaterial as long as LR lies to the right of the poles of OD. Since the 

function OD is specified, equations (24) and (25), residues theorem [71 can be used to evaluate the limit in 
eq. (26) With some straight forward analytical manipulation we get 

lim Sexp(sd) 	(s) ds =2.191-  E Res [ exp(sd) (1)(s)]1,,,, 	 (27) 
L 	 1.1 ,  

Substituting the value of OD(s) given by eq. (24) and then comparing with eq. (26), we get 

n(-1) exp (sd) 	(s 	 d <_0 
k=1 , 1=1 	 p2 ,.) = 	

(28) 

n(_i) Ctexp(sd) [ fl 	(8  P2I  ) 	
11A=m, , 	d 0 

k=1 	k 	1=1 	 r=1 2r ) 

IV. Pairwise Error Event Probability 
Since the pairwise error probability P(c---)c) is defined as the probability that D 0, then one can find i t 

by integrating the pdf, PD (d), given by eq. (28), from -oo to 0 
0 

P(c 	f p „(d) dd 
_00 

L , 

,A.,k ) 1=1 r=1 SkS —PO (s— p2 ,. ) 	 {z[ 	 ,}1„„,, 	 (29) 

V. Bit Error Probability 
Since in nearly all applications, we are interested in the overall bit error event probability, an 

approximation to the bit error probability can be obtained by summing the pairwise error event probabilities 
as 

Pb 	a(c,C) p(c--> c) 	 (30) 
CAC 

where a (c,c) is the number of bit errors associated with each error event, and the summation is taken over 
the set of dominant (most probable) error events. 

(25) 

PD(d) 
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VI. Conclusions: 
We have analyzed the performance of an interleaved convolutional coded BPSK with perfect channel 

state information and coherent detection , assuming perfect synchronization. The mobile radio channel, 
characterized by its exponential correlation function has been taken as an example for time dispersive correlated 
fading channels. Analytical results have been derived for the pairwise error event probability using the 
characteristic function technique. An approximate bit error probability of this coded modulation scheme is 
obtained by summing the probability of the dominant error events. 
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