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ABSTRACT 

Fractal dimensions provide an objective means for comparing fractals. They are 
important because they can be derived from real world data, and they can be 
measured approximately by means of experiments. Also, they may be viewed as 
measurement of the shape roughness. 

In this work, three algorithms for evaluation of fractal dimensions are implemented. 
These algorithms are based on box counting approach. A comparison is made 
between the results of these algorithms when evaluating the fractal dimensions of 
some computer-generated surfaces. These surfaces are of different fractal 
dimensions. The results showed that the fractal dimension could be used for 
measuring the shape roughness with an acceptable accuracy. The results showed 
also that there are significant differences between these methods in accuracy, 
stability, reliability and the needed time for computation. 
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1- INTRODUCTION 

The texture of a surface has some properties such as fine, coarse, smooth, 
granulated, rippled, mottled, irregular, random„ etc. [1]. There are many attempts to 
find out a model for describing and analyzing textures. The objective of image 
modeling involves the construction of models for the specification of images. These 
models can describe images that are observed and they can also be used to 
generate synthetic images from the model-parameters [2]. Textures in the real world 
are usually irregular in which structural errors; distortion, or even structural variation 
are frequent. This means that no strict rule can be used to describe a texture in 
reality. Another approach to texture description is to use fractals, [3], to describe 
irregular but ordered shapes and surfaces. For example, Normand and Peleg[4], 
and Barrett and Peleg [5] studied the food structure using the fractal model. 
Measured fractal dimension also has been related to product functionality, 
processing history and storage conditions. Olsen et aL[6], introduced a new concept 
called a modified fractal dimension. This modified fractal dimension combines the 
number of landscape patches, their distribution, and shape into an overall measure 
of landscape diversity. Cross et al [7], examined the structure of the renal arterial 
system to decide whether or not it has a fractal structure. They found that, the renal 
arterial tree has fractal structure, and used it as a measure of abnormalities in this 
structure. Pentland [8] has suggested a method for image segmentation based on 
fractal dimension, such that, the image is divided into windows of sizes 4x4 or 8x8 
pixels. Then, the fractal dimension is evaluated for each window and. a histogram is 
constructed for the fractal dimension and the number of windows. Finally, a 
threshold value is chosen to break the histogram into two regions. It is found that this 
method is better than thresholding on the image intensity. The most popular 
application of fractals is the generation of natural-scene-like images. It is widely used 
in computer graphics, flying simulation and computer games [9]. 

The definition of fractal dimension and its use for modeling natural surfaces is 
introduced in section 1. Evaluation of the fractal dimension using the box counting 
method by three different algorithms is described in section 3. Section 4 includes a 
comparison of the results obtained when implementing the three algorithms for 
evaluating the fractal dimension of computer generated surfaces. Finally a 
conclusion is presented. 

2- FRACTAL DIMENSIONS 

In order to clarify what is meant by a dimension, let us consider a one-dimensional 
curve, in which the (x,y) coordinates are, either explicitly or implicitly, functions of 
single parameter. For example the points on a circle can be specified using a single 
parameter 0. A two-dimensional surface is one whose coordinates are functions of 
two parameters. This is the natural notion of Euclidean dimension. In general, when 
we attempt to measure a metric property e.g.: length, area, or volume for any object, 
we consider a measuring tool of size and then we count the number n of that tool 
which is required to cover that object, formula (1). 
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Where, M is the metric property, D is the topological dimension of the measuring 
tool, is the size of the measuring instruments, and, n is the count of that tool 
which is required to cover that object [10]. 

Mandlbrot, [3], defines the fractal dimension as the unique fractional power that 
yields a consistent estimate of the metric property for the fractal object under 
discussion. It provides the correct adjustment factor for all those details smaller than 
k. Also it may be viewed as a measurement of the shape roughness [8]. 

There are various numbers associated with fractals, which are generally referred to 
as fractal dimensions. Mathematicians have given many notions of dimension such 
as topological dimension, Hausdorf dimension, self-similarity dimension, divider 
dimension, box-counting dimension and more. Our discussion is restricted to three 
of these dimensions that are special forms of Mandlbrot's fractal dimension: Self-
Similarity Dimension, Divider Dimension, and Box-Counting Dimension. 

2.1- Self-Similarity Dimension 

An object is said to be self-similar, if we can divide it into smaller pieces, such that 
every piece is a small copy of the original object scaled down by a scaling factor. 
The process of division may be considered as the influence of a similarity 
transformation on the entire object. This relationship may be formed in the following 
power law: 

a = 1/sD 	 (2) 

Where s is the scaling factor and a is the number of pieces. The exponent D=1 for a 
line, D=2 for a square, and D=3 for a cube, i.e. D is equal to the topological 
dimension for these objects. Strictly speaking, if we have a self-similar object then 
we can find a relation between the number of pieces a and the scaling factor s on 
the form of equation (2), and hence the self-similarity, fractal dimension is given by 
the following formula: 

D = Log(a)  
Log(X) 

(3) 

To distinguish it from other types of fractal dimension, Ds  denotes the self-similarity-
dimension. That is the self-similarity dimension for a line, a square, a cube coincides 
with the topological dimension for that object. This means that there is a relationship 
between self-similarity dimension Ds  and the power D in the power law (2), which 
describes the measured length in terms of measuring tool size. The fraction part in 
Ds  is equal to the power D. This relation may be expressed mathematically as 
follows: 
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Ds= 1+D 	 (4) 

2.2- Divider Dimension 

Another type of fractal dimension is called divider or compass dimension. This 
dimension can be computed for a fractal object using the power law, previously 
introduced, relating the length, area, or volume for the object under discussion and 
the size of the measurement tool. The exponent D in this law is used to compute the 
divider dimension for the formula: 

Dd = 1+D. 	 (5) 

This type of fractal dimension is computed for fractal objects that have no clear self-
similarity properties such as coastlines. For example, if D=0.36 for a coastline, then 
we can say that this coastline has fractal (divider) dimension of about 1.36. 

2.3- Box Counting Dimension 

The previous two types of fractal dimensions are hard to compute from raw data 
images, unless the object under discussion satisfies some properties. That is to 
compute self-similarity dimension for an object, it must show clear self-similarity 
properties. On the other hand, to compute divider dimension for an object, we must 
be able to use a measurement tool to measure it. 

2.3.1- Mathematical Definition of Box-Counting Dimension 

The box-counting dimension is derived form Minkoviski-Bouligand definition of 
dimension [11]. If E is a bounded set in Euclidean space, then E(c) is the set of all 
points at a distance c from E. That is, it is the union of all open balls of radius E 
centered on E, it is called Minkoviski sausage. The Minkoviski-Bouligand dimension 
is given by: 

D(E)= Lim LogV(E(e)) 
.,0 Log(s) (6) 

Where V(E(E)) is the volume of the set E(c). 

Practically V(E(c)) is difficult to be calculated. Thus, it is preferred to count the 
number C2, of cubes of side s required to cover E. It should be noted that, these 
cubes must have disjoint interior. The union of these cubes is a good approximate 
for Minkoviski sausage. That is, we can replace V(E(c)) by e 0, in equation (6) 
which yields: 
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D(E) = Lim Log(QE)  
e,o Log(11s) 

This is usually called box-counting dimension. Since formula (6) and formula (7) are 
mathematically equivalent, the box-counting dimension and Minkoviski-Bouligand 
dimensions are the same. We can use both of them to evaluate the fractal 
dimension of any fractal bounded set by computing V(E(E)) or counting Ste  for various 
values of c . Then, we draw a Log-Log diagram between OE  and E. Finally we use the 
slope of the fitted line of the represented data as an estimate of the fractal 
dimension. This formula can also be used to evaluate the fractal dimension of a 
bounded set if its points are determined by their (x,y,z) coordinates. That is, we can 
use these formulas to compute the fractal dimension for imaged surfaces, where 
(x,y) coordinates represent the spatial coordinates of the image, and (z) coordinate 
represents the image intensity. 

3- EVALUATING FRACTAL DIMENSION 

The problem of applying the fractal model to real image represents a subject of 
many research efforts. But, there is an important question, that is How could the 
imaging process map a fractal surface-shape into an image intensity surface? 
Pentland [8] has presented evidence that most natural surfaces are spatially 
isotropic fractals and that intensity images of these surfaces are also fractals 
Pentland's work provides the foundation for the use of fractal features in image 
analysis. 

In this section, we will discuss some methods for evaluating the fractal dimension of 
an object from its image using box-counting dimension. These methods include 
Voss method, Keller method, and Sarkar method. Algorithms for these methods are 
also introduced. These methods relate the rate of growth of the number of boxes 
needed to cover the volume to the fractal dimension [12]. Box counting estimates 
the fractal dimension as follows: the image is covered by a sequence of rectangular 
grids, and a log-log plot is generated which plots the number of grid segments which 
intersect the image intensity surface versus the size of the grid. A slope value is 
assigned to the plot and is used for the estimate of the fractal dimension. 

3.1- Voss Method 

Voss has proposed an approach to estimate the fractal dimension by box counting 
[13]. This approach is based on the probability, by counting the boxes as follows: 
Define P(m,L) to be the probability that there are m points in a box of side length L, 
centered about arbitrary points. That is: 

L3  I P(m, L)=1 
m=1 

(8) 
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Consider that the total number of points in the image is M, and the image is covered 
by boxes of side length L, then the number of boxes with m points inside each box is 
given by: 

—mP(m, L) 	 (9) 

That is the total number of boxes with side length L required to cover the whole 
image is given by: 

N(L)= E —M 
  P(m, L)=M E 	L) 

m=1 m 	 m=1 

L3 L3  
(10) 

Notice that, M is constant for all values of L. So we may let: 

L3 
P(m, 

 L) 
N(L)= 

m=1 m 

Notice that N(L) is proportional to L-D. Hence we can use it to estimate the fractal 
dimension. 

To get an estimate of the fractal dimension using this method we proceed as follows. 
We center a box of side L at a pixel (x, y, f(x,y)) in the image of a size NxN, and we 
count the number m of points which fall within that box. Then, we record that 
number as m(L, x, y). We restrict the process of centering to the pixels having 
neighbors inside the image. That is, we leave out a strip of width (L-1)12 on the 
border of the image. In this case the image is reduced to an image of size (M-(L-
1)/2)*(N-(L-1)/2). The reduced image is divided into windows. For each window, the 
occurrences of m(L, x, y) are accumulated over the pixels within the window, and the 
probability distribution P(m, L) is obtained by dividing the occurrence m(L, x, y) by 
the total number of pixels in the window. The estimate of the fractal dimension is the 
slope of the fitted line obtained from applying the least square linear fit method to 
Log(L) versus Log(N(L)). Finally, we calculate N(L) from equation (11) 

3.1.1- Algorithm for Voss method 

Begin 
Set P[m,L] E-- 0 For all values of L and possible values of m; 

Do For each pixel in the image 
Do For each box of length L 

Center a box of side length L on the current pixel (x,y,f(x,y); 
m 4— The number of image points which fall in the box; 
Increment P[m,L] by 1; 

End Do 
End Do 
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Interpolate the surface between the center of the box and each of its 
neighbors; 
Increase m (x,y,L) by The number of interpolated surface points which fall in 
the box; 

End Do 
Do For each value of L and m 
Evaluate the probability that there are m points in a box of side 
length L by dividing P[m,L] by the total number of points which falls on 
that box (the summation of all values of m); 
End Do 
Do For each value of L and m 

Calculate N[L] from equation (11); 
End Do 

Estimate D from the slope of the least square linear fit of the data 
Log(L) and Log(N[L])}; 

END. 

3.3- Sarkar Method 

Sarkar and Chaudhuri [14] have introduced a modification to Keller's method 
described above. In their modification, the number of boxes required to cover the 3D 
space is counted in different manner. Consider that an image of size MxM pixels has 
been scaled down to SxS, where 1<SM/2, and S is an integer. The scaling down 
ratio is S/M. As in the previous method, suppose that the image is a 3D space with 
(x,y) coordinates denoting 2D position, and the z-coordinate denotes gray levels. 
The XY space is partitioned into girds of sides SxS. On each grid there is a stack of 
boxes of sides SxSxS'. If the total number of gray levels is G then LG/S'J = LM/Si. 
Let the maximum and minimum gray levels in the (i,j)th  grid fall into boxes number K 
and L respectively. Define 

nr(i,j)=L+K-1 	 (12) 

to be the contribution of Nr  (the number of boxes for the scaling down ratio r) in the 
(i,j)th  grid. Taking the sum of the contributions of all grids, we get 

Nr  = 	nr  (i, 	 (13) 

Nr  is computed for various values for r. Then, we estimate the fractal dimension from 
the least square linear fitting of Log(Nr) versus Log(1/r). It is important to note that, 
this method of computing considers the effect of the sharp gray level variation, in 
neighboring pixels in the image . Hence, it can be used for an accurate estimate for 
the fractal dimension for rough textures. 
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3.3.1- Algorithm for Sarkar method 

Begin 

	

Set N[S] 	0 For all values of S; 
Do For each pixel in the image 

Do For each grid length S 
Center a stack of boxes of side length S on the current pixel (x,y,f(x,y); 
K 4- the box containing the minimum gray level on the grid; 
L <— the box containing the maximum gray level on the grid; 
Calculate nr  from equation (13) 

	

sn 	sn + nr  
End Do 
N[S] 	sn 

End Do 
Estimate D from the slope of the least square linear fit of the data Log(S) and 

Log(N[S])}; 
END. 

Note that, in the previous methods the image is considered as a 3D space as the 
following form : z = f(x,y), with x and y-coordinates are supposed to be independent 
(spatial coordinates), but in most applications z-coordinate is a measurement whose 
scale is usually given arbitrarily by a machine. That is, the three coordinates are 
different in nature. Strictly speaking, the function f and c.f (here c is constant) should 
define a surface with the same fractal dimension. Unfortunately, algorithms based 
on the definition of box-counting dimension are sensitive to the change of amplitude 
[11]. 

4- IMPLEMENTATION OF FRACTAL DIMENSION 
EVALUATION ALGORITHMS 

In order to use the above three methods for evaluating the fractal dimensions, their 
algorithms are implemented and tested with a set of computer generated surfaces 
with different fractal dimensions. The use of computer generated surfaces comes 
from the need to test these algorithms for evaluating the fractal dimension for 
surfaces of predefined fractal dimensions. The fractional Brownian motion (fBm) is 
used to generate the fractal surfaces. The generated graphics shapes are converted 
to image files in order to be suitable for processing. 

4.1- Generation of Surfaces 

4.1.1- Brownian Motion 

Brownian motion is the motion of small particles caused by the continual 
bombardment by other neighboring particles [15]. The fractional Brownian motion is 
a generalization of ordinary Brownian motion that has been used successfully to 
model a variety of natural phenomena, such as terrain, and clouds. 
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4.1.2: Ordinary Brownian Motion 

Brownian motion is a process in which a particle is subjected to random 
displacement. In a simple one-dimensional model the displacement are either +1 
struck from the left or —1 struck from the right. More formally, the position of the 
particle at time t can be represented as a random variable V(t). That is, V(t) can be 
written as the following equation: 

V(t)=EL;  
(-0 

(14) 

where Li is a random variable taking the values +1 and —1 with equal probability. 
One characteristic of such a random walk is that the average displacement is 
proportional to the square root of the time difference, that is: 

I V(t) - V(t + dt) I x dt (15 	 (15) 
This is due to the huge number of particles moving in virtually all directions, so the 
average position remains the same [13], [29]. 

4.1.2- Fractional Brownian Motion 

Fractional Brownian motion (fBm) is a generalization of ordinary Brownian motion 
with the scaling property: 

I V(t) - V(t + dt) I cc dt h 	 (16) 

for arbitrary h, 0<h<1. The exponent h is called Hurst exponent. Ordinary Brownian 
motion has h=1/2. The concept of fractional Brownian motion can be extended to 
higher dimensions when the variable t becomes a vector. If t is a two-dimensional 
vector then V(t) represents a surface in the space. 

4.2- Generating Fractional Brownian Motion 

Meader [16], developed three different methods for Generating two-dimensional 
fractional Brownian motion. It is important to note that, the two-dimensional fractional 
Brownian motion is represented by a surface. These methods are namely Random 
Addition, Fourier synthesis, and Random Faults. In this work we use the second 
method (Fourier synthesis) to generate these surfaces because it is simple in 
calculations. 

4.2.1- Fourier Synthesis 

The average amplitude of of fBm data at frequency f obeys the simple law 
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where f3. = 2h+1 is the spectral exponent. One method to generate fBm data is to 
generate random Fourier coefficient according to that formula and then to perform 
inverse Fourier transforms. 

In two-dimensional case, the Fourier coefficient uk1k2  =uk should have mean 
amplitude 

K  I -(P+t)i2 = (k12 	k22)  -(3+1)/4 = (k12 	k22)  -(h+1)/2 (18) 

the fractal dimension of the generated surface is related to Hurst exponent by the 
following formula: 

D = E+1-h 	 (19) 

4.3- Results 
4.3.1- Effect Of Image Resolution 

The results are shown in fig.(1), fig(2) and fig(3). We noticed that, these methods are 
affected by the image resolution. Upon increasing the image resolution from 32x32, 
64x64 to 128x128, the estimated fractal dimensions get more accurate values. 

Box-counting limitations come from the assumed limits on the range of scale-
invariance and on methods of assigning slopes to non-linear plots. It leads to 
unreliable and inconsistent FD estimates for low-resolution images [16]. 

The estimated fractal dimensions using methods of Voss and Keller show-in 
general- an unstable behavior for images with size 32x32. 

Fig (1): fractal dimension for generated surface 
of size 32x32 by different methods 
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Fig (2): fractal dimension for generated surface 
of size 64x64 by different methods 

Fig (3): fractal dimension for generated surface 
of size 128x128 by different methods 

At resolution 64x64, acceptable results are achieved. But, for surfaces with original 
fractal dimension 2.5 there is a drop in results obtained by Voss and Keller methods. 

On images with resolution 128x128, as expected, the estimated fractal dimensions 
lie in the range 2.0-3.0, and increases with the increment of image roughness. Note 
that, Voss's method compresses the estimated fractal dimension to the middle of the 
true range as Keller stated in his paper [131 The interpolation in Keller's method 
gives satisfactory results up to certain level of roughness of the image intensity 
surface. 

Sarkar's method gives more accurate results than the previous two methods. An 
example for this accuracy, we noticed that the estimated fractal dimensions form 
Voss and Keller methods decrease with the increasing of surface roughness for 
some surfaces (different images). On the other hand, Sarkar's method, always, 
increases with the increasing of the surface roughness. 
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In general, he results obtained using Sarkar's method are better than those obtained 
using the other two methods, because it is accurate and more sensitive for surface 
roughness. It almost covers the total range of fractal dimension. 

4.3.2- Computation Requirements 

A comparison is made for the number of computational operations and the elapsed 
time while using the three methods. Table (3) and table (4) depict this comparison. 
The results showed that Sarkar' method represents better performance than the 
other two methods. 

Table (3): Comparison of number of computations 

Method Operations 
Add Subtract Multiply Divide Compare 

Voss 413570 101736 20 4072 312283 
Keller 687633 237176 20 43408 400094 
Sarkar 290644 3439 20 40 560654 

Table (4): Comparison of elapsed time 

Method Elapsed time for different Resolution 
32x32 64x64 128x128 

Voss 0.001 0.050 0.22 
Keller 0.001 0.065 0.310 
Sarkar 0.001 0.059 0.110 

CONCLUSIONS 

In this work we discussed the fractal model, which is one of the most important 
image models. We adopted a number of the most popular algorithms for evaluating 
the fractal dimension from digital image data. The advantages and disadvantages of 
each algorithm are, also, illustrated. These results showed that Sarkar's method 
more reliable and accurate than Voss and Keller methods for evaluating the fractal 
dimension. Sarkar's method shows, also, better performance in computational 
requirements. Finally, the fractal dimension represents suitable measure of surface 
roughness natural surfaces, clouds, terrain, etc.. 
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