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ABSTRACT

Fractal dimensions provide an objective means for comparing fractals. They are
important because they can be derived from real world data, and they can be
measured approximately by means of experiments. Also, they may be viewed as
measurement of the shape roughness.

In this work, three algorithms for evaluation of fractal dimensions are implemented.
These algorithms are based on box counting approach. A comparison is made
between the results of these algorithms when evaluating the fractal dimensions of
some computer-generated surfaces. These surfaces are of different fractal
dimensions. The results showed that the fractal dimension could be used for
measuring the shape roughness with an acceptable accuracy. The results showed
also that there are significant differences between these methods in accuracy,
stability, reliability and the needed time for computation.
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1- INTRODUCTION

The texture of a surface has some properties such as fine, coarse, smooth,
granulated, rippled, mottled, irregular, random,, etc. [1]. There are many attempts to
find out a model for describing and analyzing textures. The objective of image
modeling involves the construction of models for the specification of images. These
models can describe images that are observed and they can also be used to
generate synthetic images from the model-parameters [2]. Textures in the real world
are usually irregular in which structural errors; distortion, or even structural variation
are frequent. This means that no strict rule can be used to describe a texture in
reality. Another approach to texture description is to use fractals, [3], to describe
irregular but ordered shapes and surfaces. For example, Normand and Peleg[4],
and Barrett and Peleg [5] studied the food structure using the fractal model.
Measured fractal dimension also has been related to product functionality,
processing history and storage conditions. Olsen ef al.[6], introduced a new concept
called a modified fractal dimension. This modified fractal dimension combines the
number of landscape patches, their distribution, and shape into an overall measure
of landscape diversity. Cross et al [7], examined the structure of the renal arterial
system to decide whether or not it has a fractal structure. They found that, the renal
arterial tree has fractal structure, and used it as a measure of abnormalities in this
structure. Pentland [8] has suggested a method for image segmentation based on
fractal dimension, such that, the image is divided into windows of sizes 4x4 or 8x8
pixels. Then, the fractal dimension is evaluated for each window and. a histogram is
constructed for the fractal dimension and the number of windows. Finally, a
threshold value is chosen to break the histogram into two regions. It is found that this
method is better than thresholding on the image intensity. The most popular
application of fractals is the generation of natural-scene-like images. It is widely used
in computer graphics, flying simulation and computer games [9].

The definition of fractal dimension and its use for modeling natural surfaces is
introduced in section 1. Evaluation of the fractal dimension using the box counting
method by three different algorithms is described in section 3. Section 4 includes a
comparison of the results obtained when implementing the three algorithms for
evaluating the fractal dimension of computer generated surfaces. Finally a
conclusion is presented.

2- FRACTAL DIMENSIONS

In order to clarify what is meant by a dimension, let us consider a one-dimensional
curve, in which the (x,y) coordinates are, either explicitly or implicitly, functions of
single parameter. For example the points on a circle can be specified using a single
parameter 6. A two-dimensional surface is one whose coordinates are functions of
two parameters. This is the natural notion of Euclidean dimension. In general, when
we attempt to measure a metric property e.g.: length, area, or volume for any object,
we consider a measuring tool of size  and then we count the number n of that tool
which is required to cover that object, formula (1).
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M=n D ™)

Where, M is the metric property, D is the topological dimension of the measuring
tool, is the size of the measuring instruments, and, n is the count of that tool
which is required to cover that object [10].

Mandlbrot, [3], defines the fractal dimension as the unique fractional power that
yields a consistent estimate of the metric property for the fractal object under
discussion. It provides the correct adjustment factor for all those details smaller than
A. Also it may be viewed as a measurement of the shape roughness [8].

There are various numbers associated with fractals, which are generally referred to
as fractal dimensions. Mathematicians have given many notions of dimension such
as topological dimension, Hausdorf dimension, self-similarity dimension, divider
dimension, box-counting dimension and more. Our discussion is restricted to three
of these dimensions that are special forms of Mandlbrot's fractal dimension: Self-
Similarity Dimension, Divider Dimension, and Box-Counting Dimension.

2.1- Self-Similarity Dimension

An object is said to be self-similar, if we can divide it into smaller pieces, such that
every piece is a small copy of the original object scaled down by a scaling factor.
The process of division may be considered as the influence of a similarity
transformation on the entire object. This relationship may be formed in the following
power law:

= 1/sP @)

Where s is the scaling factor and a is the number of pieces. The exponent D=1 for a
line, D=2 for a square, and D=3 for a cube, i.e. D is equal to the topological
dimension for these objects. Strictly speaking, if we have a self-similar object then
we can find a relation between the number of pieces a and the scaling factor s on
the form of equation (2), and hence the self-similarity, fractal dimension is given by
the following formula:

D_Log(}g)

To distinguish it from other types of fractal dimension, Ds denotes the self-similarity-
dimension. That is the self-similarity dimension for a line, a square, a cube coincides
with the topological dimension for that object. This means that there is a relationship
between self-similarity dimension Dg and the power D in the power law (2), which
describes the measured length in terms of measuring tool size. The fraction part in
Dg is equal to the power D. This relation may be expressed mathematically as

follows:
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Dg= 1+D (4)

2.2- Divider Dimension

Another type of fractal dimension is called divider or compass dimension. This
dimension can be computed for a fractal object using the power law, previously
introduced, relating the length, area, or volume for the object under discussion and
the size of the measurement tool. The exponent D in this law is used to compute the
divider dimension for the formula:

Dg = 1+D. (5)

This type of fractal dimension is computed for fractal objects that have no clear self-
similarity properties such as coastlines. For example, if D=0.36 for a coastline, then
we can say that this coastline has fractal (divider) dimension of about 1.36.

2.3- Box Counting Dimension

The previous two types of fractal dimensions are hard to compute from raw data
images, unless the object under discussion satisfies some properties. That is to
compute self-similarity dimension for an object, it must show clear self-similarity
properties. On the other hand, to compute divider dimension for an object, we must
be able to use a measurement tool to measure it.

2.3.1- Mathematical Definition of Box-Counting Dimension

The box-counting dimension is derived form Minkoviski-Bouligand definition of
dimension [11]. If E is a bounded set in Euclidean space, then E(g) is the set of all
points at a distance € from E. Thatis, it is the union of all open balls of radius ¢
centered on E, itis called Minkoviski sausage. The Minkoviski-Bouligand dimension
is given by:

D(E) = Lim 228V (£()

£—0 LOg(E) (6)

Where V(E(e)) is the volume of the set E(g).

Practically V(E(g)) is difficult to be calculated. Thus, it is preferred to count the
number Q. of cubes of side & required to cover E. It should be noted that, these
cubes must have disjoint interior. The union of these cubes is a ?ood approximate

for Minkoviski sausage. That is, we can replace V(E(e)) by & Q. in equation (6)
which yields:
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.. Log(k)
D) = i oeli) A7)

This is usually called box-counting dimension. Since formula (6) and formula (7) are
mathematically equivalent, the box-counting dimension and Minkoviski-Bouligand
dimensions are the same. We can use both of them to evaluate the fractal
dimension of any fractal bounded set by computing V(E(g)) or counting Q, for various
values of £ . Then, we draw a Log-Log diagram between Q. and ¢. Finally we use the
slope of the fitted line of the represented data as an estimate of the fractal
dimension. This formula can also be used to evaluate the fractal dimension of a
bounded set if its points are determined by their (x,y,z) coordinates. That is, we can
use these formulas to compute the fractal dimension for imaged surfaces, where
(x,y) coordinates represent the spatial coordinates of the image, and (z) coordinate
represents the image intensity.

3- EVALUATING FRACTAL DIMENSION

The problem of applying the fractal model to real image represents a subject of
many research efforts. But, there is an important question, that is How could the
imaging process map a fractal surface-shape into an image intensity surface?
Pentland [8] has presented evidence that most natural surfaces are spatially
isotropic fractals and that intensity images of these surfaces are also fractals
Pentland’s work provides the foundation for the use of fractal features in image
analysis.

In this section, we will discuss some methods for evaluating the fractal dimension of
an object from its image using box-counting dimension. These methods include
Voss method, Keller method, and Sarkar method. Algorithms for these methods are
also introduced. These methods relate the rate of growth of the number of boxes
needed to cover the volume to the fractal dimension [12]. Box counting estimates
the fractal dimension as follows: the image is covered by a sequence of rectangular
grids, and a log-log plot is generated which plots the number of grid segments which
intersect the image intensity surface versus the size of the grid. A slope value is
assigned to the plot and is used for the estimate of the fractal dimension.

3.1- Voss Method
Voss has proposed an approach to estimate the fractal dimension by box counting
[13]. This approach is based on the probability, by counting the boxes as follows:

Define P(m,L) to be the probability that there are m points in a box of side length L,
centered about arbitrary points. That is:

LB
> P(m,L)=1 (8)

m=I
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Consider that the total number of points in the image is M, and the image is covered
by boxes of side length L, then the number of boxes with m points inside each box is
given by:

—M—P(m, L) (9)
m

That is the total number of boxes with side length L required to cover the whole
image is given by:

L 1%
NL)=3 Mpm,L)=m 5 Pm.L) (10)
=1 M m=1 m
Notice that, M is constant for all values of L. So we may let:
L]
N(L)= Ful) (11)
m=] m

Notice that N(L) is proportional to L-D. Hence we can use it to estimate the fractal
dimension.

To get an estimate of the fractal dimension using this method we proceed as follows.
We center a box of side L at a pixel (x, y, f(x,y)) in the image of a size NxN, and we
count the number m of points which fall within that box. Then, we record that
number as m(L, x, y). We restrict the process of centering to the pixels having
neighbors inside the image. That is, we leave out a strip of width (L-1)/2 on the
border of the image. In this case the image is reduced to an image of size (M-(L-
1)/2)*(N-(L-1)/2). The reduced image is divided into windows. For each window, the
occurrences of m(L, x, y) are accumulated over the pixels within the window, and the
probability distribution P(m, L) is obtained by dividing the occurrence m(L, x, y) by
the total number of pixels in the window. The estimate of the fractal dimension is the
slope of the fitted line obtained from applying the least square linear fit method to
Log(L) versus Log(N(L)). Finally, we calculate N(L) from equation (11)

3.1.1- Algorithm for Voss method

Begin
Set P[m,L] « 0 For all values of L and possible values of m;
Do For each pixel in the image
Do For each box of length L
Center a box of side length L on the current pixel (x,y,f(x,y);
m < The number of image points which fall in the box;
Increment P[m,L] by 1;
End Do
End Do
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Interpolate the surface between the center of the box and each of its
neighbors;
Increase m (x,y,L) by The number of interpolated surface points which fall in
the box;
End Do
Do For each value of L and m
Evaluate the probability that there are m points in a box of side
length L by dividing P[m,L] by the total number of points which falls on
that box (the summation of all values of m);
End Do
Do For each value of L and m
Calculate N[L] from equation (11);
End Do
Estimate D from the slope of the least square linear fit of the data
Log(L) and Log(N[L])};
END.

3.3- Sarkar Method

Sarkar and Chaudhuri [14] have introduced a modification to Keller's method
described above. In their modification, the number of boxes required to cover the 3D
space is counted in different manner. Consider that an image of size MxM pixels has
been scaled down to SxS, where 1<S<M/2, and S is an integer. The scaling down
ratio is S/M. As in the previous method, suppose that the image is a 3D space with
(x,y) coordinates denoting 2D position, and the z-coordinate denotes gray levels.
The XY space is partitioned into girds of sides SxS. On each grid there is a stack of
boxes of sides SxSxS'. If the total number of gray levels is G then | G/S'| = | M/S .
Let the maximum and minimum gray levels in the (i,j)th grid fall into boxes number K
and L respectively. Define

np(i,j)=L+K-1 (12)

to be the contribution of N, (the number of boxes for the scaling down ratio r) in the

(i,j)th grid. Taking the sum of the contributions of all grids, we get

Ny =2.n.3,)J) (13)
L]

Ny is computed for various values for r. Then, we estimate the fractal dimension from
the least square linear fitting of Log(N,) versus Log(1/r). It is important to note that,

this method of computing considers the effect of the sharp gray level variation, in
neighboring pixels in the image . Hence, it can be used for an accurate estimate for
the fractal dimension for rough textures.
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3.3.1- Algorithm for Sarkar method

Begin
Set N[S] « 0 For all values of S;
Do For each pixel in the image
Do For each grid length S
Center a stack of boxes of side length S on the current pixel (x,y,f(x,y);
K « the box containing the minimum gray level on the grid;
L « the box containing the maximum gray level on the grid;
Calculate n; from equation (13)
SN« sn+n,
End Do
N[S] « sn
End Do
Estimate D from the slope of the least square linear fit of the data Log(S) and
Log(N[S]};
END.

Note that, in the previous methods the image is considered as a 3D space as the
following form : z = f(x,y), with x and y-coordinates are supposed to be independent
(spatial coordinates), but in most applications z-coordinate is a measurement whose
scale is usually given arbitrarily by a machine. That is, the three coordinates are
different in nature. Strictly speaking, the function f and c.f (here c is constant) should
define a surface with the same fractal dimension. Unfortunately, algorithms based
on the definition of box-counting dimension are sensitive to the change of amplitude

[11].

4- IMPLEMENTATION OF FRACTAL DIMENSION
EVALUATION ALGORITHMS

In order to use the above three methods for evaluating the fractal dimensions, their
algorithms are implemented and tested with a set of computer generated surfaces
with different fractal dimensions. The use of computer generated surfaces comes
from the need to test these algorithms for evaluating the fractal dimension for
surfaces of predefined fractal dimensions. The fractional Brownian motion (fBm) is
used to generate the fractal surfaces. The generated graphics shapes are converted
to image files in order to be suitable for processing.

4.1- Generation of Surfaces

4.1.1- Brownian Motion

Brownian motion is the motion of small particles caused by the continual
bombardment by other neighboring particles [15]. The fractional Brownian motion is
a generalization of ordinary Brownian motion that has been used successfully to
model a variety of natural phenomena, such as terrain, and clouds.
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4.1.2: Ordinary Brownian Motion

Brownian motion is a process in which a particle is subjected to random
displacement. In a simple one-dimensional model the displacement are either +1
struck from the left or —1 struck from the right. More formally, the position of the
particle at time tcan be represented as a random variable V(t). That is, V(t) can be
written as the following equation:

V=31, (14)

where L; is a random variable taking the values +1 and —1 with equal probability.
One characteristic of such a random walk is that the average displacement is
proportional to the square root of the time difference, that is:

V() - V(t + dt) | o« dt°® (15)
This is due to the huge number of particles moving in virtually all directions, so the
average position remains the same [13], [29].

4.1.2- Fractional Brownian Motion

Fractional Brownian motion (fBm) is a generalization of ordinary Brownian motion
with the scaling property:

V(@) - Vit + dt) | o dt” (16)

for arbitrary h, O<h<1. The exponent h is called Hurst exponent. Ordinary Brownian
motion has h=1/2. The concept of fractional Brownian motion can be extended to
higher dimensions when the variable t becomes a vector. Ift is a two-dimensional
vector then V(t) represents a surface in the space.

4.2- Generating Fractional Brownian Motion

Meader [16], developed three different methods for Generating two-dimensional
fractional Brownian motion. It is important to note that, the two-dimensional fractional
Brownian motion is represented by a surface. These methods are namely Random
Addition, Fourier synthesis, and Random Faults. In this work we use the second
method (Fourier synthesis) to generate these surfaces because it is simple in
calculations.

4.2.1- Fourier Synthesis

The average amplitude vs of fBm data at frequency f obeys the simple law
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vpec 1142 (17)

where B = 2h+1 is the spectral exponent. One method to generate fBm data is to
generate random Fourier coefficient according to that formula and then to perform
inverse Fourier transforms.

In two-dimensional case, the Fourier coefficient Uklkz =V should have mean

amplitude
I K | ~(p+1)/2 = (k12 + k22) -(p+1)/4 = (k12 + k22) ~(h+1)/2 (18)

the fractal dimension of the generated surface is related to Hurst exponent by the
following formula:

D = E+1-h (19)

4.3- Results
4.3.1- Effect Of Image Resolution

The results are shown in fig.(1), fig(2) and fig(3). We noticed that, these methods are
affected by the image resolution. Upon increasing the image resolution from 32x32,
64x64 to 128x128, the estimated fractal dimensions get more accurate values.

Box-counting limitations come from the assumed limits on the range of scale-
invariance and on methods of assigning slopes to non-linear plots. It leads to
unreliable and inconsistent FD estimates for low-resolution images [16].

The estimated fractal dimensions using methods of Voss and Keller show-in
general- an unstable behavior for images with size 32x32.

2.1 22 23 2.4 25 2.6 27 28 29
Original Fractal Dimension

Fig (1): fractal dimension for generated surface
of size 32x32 by different methods
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Calculated Fractal
Dimension

2 =S = T - T T = T e 1

2.1 2.2 23 2.4 2.5 2.6 2.7 2.8 29
Original Fractal Dimension |

Fig (2): fractal dimension for generated surface
of size 64x64 by different methods

=
i
E
=
8
o
E
E
=
2
L]
o
2 v —r— T — T — |
21 22 23 24 25 26 2.7 28 29
Orignal fractal dimension

Fig (3): fractal dimension for generated surface
of size 128x128 by different methods

At resolution 64x64, acceptable results are achieved. But, for surfaces with original
fractal dimension 2.5 there is a drop in results obtained by Voss and Keller methods.

On images with resolution 128x128, as expected, the estimated fractal dimensions
lie in the range 2.0-3.0, and increases with the increment of image roughness. Note
that, Voss’s method compresses the estimated fractal dimension to the middle of the
true range as Keller stated in his paper [13]. The interpolation in Keller's method
gives satisfactory results up to certain level of roughness of the image intensity
surface.

Sarkar's method gives more accurate results than the previous two methods. An
example for this accuracy, we noticed that the estimated fractal dimensions form
Voss and Keller methods decrease with the increasing of surface roughness for
some surfaces (different images). On the other hand, Sarkar's method, always,
increases with the increasing of the surface roughness.
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In general, he results obtained using Sarkar's method are better than those obtained
using the other two methods, because it is accurate and more sensitive for surface
roughness. It almost covers the total range of fractal dimension.

4.3.2- Computation Requirements

A comparison is made for the number of computational operations and the elapsed
time while using the three methods. Table (3) and table (4) depict this comparison.
The results showed that Sarkar method represents better performance than the
other two methods.

Table (3): Comparison of number of computations

Method Operations
Add Subtract | Multiply | Divide | Compare
Voss 413570 | 101736 20 4072 | 312283
Keller 687633 | 237176 20 43408 | 400094
Sarkar | 290644 3439 20 40 560654
Table (4): Comparison of elapsed time
Elapsed time for different Resolution
Method 32x32 64x64 | 128x128
Voss 0.001 0.050 0.22
Keller 0.001 0.065 0.310
Sarkar 0.001 0.059 0.110
CONCLUSIONS

in this work we discussed the fractal model, which is one of the most important
image models. We adopted a number of the most popular algorithms for evaluating
the fractal dimension from digital image data. The advantages and disadvantages of
each algorithm are, also, illustrated. These results showed that Sarkar's method
more reliable and accurate than Voss and Keller methods for evaluating the fractal
dimension. Sarkar's method shows, also, better performance in computational
requirements. Finally, the fractal dimension represents suitable measure of surface
roughness natural surfaces, clouds, terrain, etc..
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