
Proceedings of the 2nd ICEENG Conference, 23-25 Nov. 1999 CE-5 	I

Military Technical College
Kobry Elkobbah,

Cairo, Egypt

ICEENG 9il 2"d International Conference on
Electrical Engineering

ICEENG 99

A HIGH-LEVEL SYNTHESIS METHODOLOGY
FOR

DEDICATED DSP ARCHITECTURES

**

E. A. TALKHAN , ALY E. SALAMA*, AND F. HASHIM

ABSTRACT

In this work we present a proposed High-Level Synthesis (HLS) methodology for
dedicated Digital Signal Processing (DSP) architectures. Starting from a purely
behavior description of a DSP algorithm, the HLS subtasks namely: the Scheduling,
the Allocation, and the Binding are performed to generate an optimized Register
Transfer Level (RTL) data path structure which implements the intended behavior
while satisfying the .timing constraints. The Scheduling and the Allocation subtasks
are solved simultaneously in terms of an Integer Linear 	Programming (ILP)
feasibility model. The Binding subtask is solved using a Weighted Bipartite
Matching (WBM) algorithm. A 4-point FIR filter is used to demonstrate our
methodology in a step wise fashion, from the initially specified behavior to the
finally synthesized structure. Simulation results have proved that the finally
synthesized data path is truly implementing the initially specified behavior and
satisfying the timing constraints.

KEYWORDS: high-level synthesis, digital signal processing, register transfer level,
time-constrained optimization, weighted assignment, hardware description language.

* Professor, Faculty of Engineering, Cairo University, Giza, Egypt.
** Egyptian Armed Forces.

291

Proceedings of the 2"d ICEENG Conference, 23-25 Nov. 1999
Lc i,1

1. INTRODUCTION
High-Level Synthesis (HLS) bridges the gap between the behavioral description of a
circuit and its Register Transfer Level (RTL) structure. It starts with the behavioral
description of the circuit, and a set of constraints and goals to be satisfied, and ends
with the structure that implements the circuit's behavior while satisfying the goals
and constraints. HLS consists of a front-end that translates the input behavior
description into an intermediate representation, usually a graph-based, from which the
back-end generates the target architecture [1]. The intermediate graph-based
representation explicitly shows the control and data dependencies within the input
description in the form of a Control and Data Flow Graph (CDFG). In the CDFG,
each node represents an operation and each edge represents a data and/or control
transfer. The back-end, which is the core of the HLS, and the focus of thiE, work,

involves mainly the following three subtasks:
Scheduling: determines the sequence in which the operations of the CDFG can be
executed, by assigning the operations to consective time intervals so called control
states or clock cycles. It also determines how many states are necessary to
implement a CDFG, and drives utilization figures for functional, storage, and
interconnection units.
Allocation: determines the number of each type of the RTL components to be used
in the design. For every operation in the CDFG, we need a functional unit that is
capable to execute the operation. For every variable that is used across several
control states in the scheduled CDFG, we need a storage unit to hold the data values
during the variable's life or access time, Finally, for every data transfer in the CDFG,
we need a set of interconnection units to realize the data transfer.
Binding: after all operations have been scheduled, and the functional, the storage,
and the interconnection units have been allocated. Binding assigns the operations,
the variables, and the data transfers, from the behavioral description, into specified
instances of the allocated functional, storage, and interconnection units
respectively. When multiple alternatives exist for assignment, binding algorithm
selects the one that minimally increases the data path cost.

Due to the complexity of the HLS problem and the interdependence among its main
subtasks, different methodologies have emerged with different schemes and
objectives. The objective of producing suboptimal or globally optimal soli..tioris
defines the criteria for classifying these synthesis approaches into heuristic or exact
methodologies. The techniques used to deal with the tight interdependence among
the HLS subtasks define the criteria for classifying these schemes into independent,
iterative, and simultaneous schemes [2]. Since the DSP application domain is
resource dominated, area and delay are determined mainly by resource usage and
not by a particular binding. Thus we have chosen to solve the Binding (B) subtask,
which in this case serves only the purpose of refining the structure information for
connectivity, separately after simultaneously solving the Scheduling and the
Allocation (S&A) subtasks. In this work we present the formulation of the HLS
problem, and expose the essential mathematical and graph theoretical techniques
that we need to optimally perform the subtasks of the back-end of the HLS system.
We also demonstrate our methodology and verify our synthesis results .

292

Proceedings of the 2nd ICEENG Conference, 23-25 Nov. 1999 CE-5
	

3

2. PROBLEM FORMULATION
Considering our DSP application domain, which is mainly time-constrained, the HLS
problem formulation is defined as follows:

Problem 1: high-level synthesis
Given:

- A computational (CDFG) graph describing a digital signal processor
behavior.

- A time-constraint on the throughput rate and/or the overall execution time of
the computation graph on the synthesized architecture.

- An RTL module library.

-A minimum cost RTL structure in terms of area, which
- Implements the given behavior, and
- Satisfies the time constraints.

According to the human designer's thoughts in searching for an optimal design, our
solution methodology is logically partitioned into two phases : a Design Space
Exploration (DSE) phase, and a Data Path Construction (DPC) phase. These phases
will be explained in some details in the following two sections.

3. DESIGN SPACE EXPLORATION PHASE
In the DSE phase, our design space is explored in the following order : firstly by
considering different architectural styles, including different types of resources,
different clock cycle lengths, and different topology considerations to satisfy the
timing constraints. Secondly by calculating accurate lower and upper bounds on the
amount of all the required hardware resources to delimit the search space. Thirdly by
solving the Time and Resource Constrained (TRC) optimization problem in terms of
an Integer Linear Programming (ILP) feasibility model, where the lower bounds are
firstly used to account for the resource allocation constraints then resource counts
are incremented until a feasible schedule which uses the minimum amount of
resources (optimal schedule) is obtained. The procedures which are involved in the
DSE are summarized as follows:.

Algorithm 1: Design. Space Exploration
Selebt: an appropriate hardware module set from the RTL library.
Read : CDFG, parameters of the selected hardware modules, and the time

constraints.
Determine: the optimal set of clock cycles.
Experiment : with different clock cycle lengths within the optimal set to

obtain the least critical path length (T longest)
> T m ax

Then: Apply optimizing transformation, or
Restart the design exploration phase with faster hardware modules.

Else: Calculate lower and upper bounds on all hardware resources, and
Solve the TRC feasibility model:

Find:

If: T longest

293

Proceedings of the 2" ICEENG Conference, 23-25 Nov. 1999

Is there a S&A solution to satisfy the following set of constraints?
Assignment constraints
Precedence constraints
Resources allocation constraints
Time constraints

Non feasible: Increment the number of the heavily utilized
resources, and Restart the feasibility model again

Feasible: Start the data path construction phase
End algorithm 1

3.1 Determining a Target Architecture Style
Since HLS implies a huge design space to search, then restricting the HLS towards
one target, but flexible architecture style, will tighten the design space and make the
high-level synthesis problem more feasible [3]. Thus we have utilized the Finite State
Machine with a Data Path (FSMD) model [4], as our generic target architecture. The
FSMD implementation consists of a Finite State Machine (FSM) called the control
unit, and a data path. The style of the data path, which is our concern in this work, is
determined in terms of its primitive modules, clocking requirement, and its topology
structure as follows:

Modules selection: Since the number of operation types in the DSP application
domain is limited. In our methodology , we leave the selection of functional unit types
to the user or the expert system. For every type of operation in the CDFG, a list of
the available functional unit types is produced to perform such operation. Then the
user or the expert system browses and selects at least one from every list: for every
type covering all the operations types within the CDFG.

Clock cycle determination: Some of the values which contribute in determining the
clock period will not be available until at least the floorplanning is done. It is difficult, if
not impossible, to assess the influence of these factors during HL.S . However, the
designer must specify a nominal clock period (or at least, the data path component of
the clock period) before scheduling, realizing that the actual clock period will be
longer [5]. In our methodology we determine an optimal length for the data path
component of the clock cycle such that the slack time within each clock cycle is
minimized, as listed below:

Algorithm 1.1: clock cycle length determination
For the selected RTI, module set :

Find the minimum and maximum values of the clock cycle length such that :
--- minimum data transfer delay

c 	-- register-to-register execution delay of the slowest functional unit type.

For each selected module type :
Find the set of clock cycle values that integrally divide the module's regi.svr
to register execution delay, and not less than c

Ch-S

294

Intermediate
register

\ VY/ \ 	I
Tristate
buffer

latch

phl

Proceedings of the 2"" ICEENG Conference, 23-25 Nov. 1999

From the previous set of clock cycle values, find the value that produces the
shortest critical path length of the CDFG, using the unconstrained As Soon As
Possible (ASAP) scheduling algorithm [6].

For all module types Find the global value of the clock cycle that corresponds to the
minimum value of the critical path length : global = Coptimum

End algorithm 1.1.

Topology considerations: Our system can support a synthesis of data path
architecture in both: random topology, which is mux-based structure, and linear
topology, which is bus-based structure. In random topology architectures, the
interconnections between registers and functional units are made of point to point
direct links with multiplexers introduced at appropriate places. A linear topology
architecture, in contrast, employs a number of buses to implement the
interconnections. Consequently we have chosen the linear topology style, due to its
regularity, to implement our target data path. Our target data path comprises three
major components: functional, storage, and interconnection units, as shown in Fig. 1.

one of the functional units

Bus one of the storage units

ph2
Fig. 1. The style of our target data path.

3.2 Calculating Resource Bounds
In order to calculate resource bounds for all the hardware resources, a storage and
a connectivity graphs, are induced from the computational CDFG. In the CDFG,
G (N , E), each node ni e N represents a code operation, and each edge eu 6 E

represents a data or control dependency between the operations. In the connectivity
graph G, (A l e , E,) every node represents an edge in the corresponding CDFG. An

edge e s E, is defined in G, when there exists a precedence between two

295

Proceedings of the 2nd ICEENG Conference, 23-25 Nov. 1999

interconnection. These precedences can be derived directly from the CDFG. For our
hardware model, the storage graph Gs (N , s), is actually identical in structure to

the interconnect graph. In the storage graph each node n s e N,. corresponds to a

variable. The slack time of the node is set to the maximum lifetime of the variable,

which is equal to (t aiap (dest)- asap (source)), with cop(desr): the As Late As

Possible (ALAP) scheduling time of the variable's destination node, and

„„p (source): the As Soon As Possible (ASAP) scheduling time of the variable's

source node.

Two operations, variables, or connections can be executed simultaneously when no
precedence relationship exists between them, or in other words, when no edge exists
between them in the corresponding graph. Then the maximum possible concurrency
is obviously equal to the maximum set of nodes without precedence relations or
equivalently. the maximum independent set. Thus maximum bounds on all hardware
resources can be transformed into the maximum independent set problem which can
be solved, for a class of graphs called comparability graphs, in polynomial time

(O(N 3)) using the Minimum Flow algorithm [7].

Far more important than the maximum implementation bounds on the hardware
resources, are the minimum implementation bounds. Minimum bounds (theoretically
optimal) allows us to estimate the absolute minimum area needed for the
implementation of a given computational graph. It can also serve as an initial seed for
allocation and design space search process that normally leads to faster
convergence. Within our frame work, the absolute minimum bound for an execution

.
. ohs 	

n r 	r

unit of type 	r (r = 1 	R) is defined as : 	nun 	= 	[
Tmm

where n,. is the number of operations to be executed on resource r, t r is the number

of clock cycles it takes to execute an operation on r, 	is the available time given

in terms of clock cycles, and 	means rounded up to the nearest integer value.
The minimum bounds calculation problem for each type of resources is formulated as

follows:

Problem 2: minimum bounds calculation
Given:

- A computational graph consisting of nr identical operations with integer

ASAP and ALAP times
- The execution time of the operation on the selected hardware resource

- 	The available time constraint TM <

Find:
- The minimum number of resources in in,. needed to complete the operations

within the available time.

296

Proceedings of the 2nd ICEENG Conference, 23-25 Nov. 1999
CE-5
	

7

This minimum bounds calculation problem cannot be solved directly, but can be
defined as an iterative version of its dual formulation as follows:

Problem 2.1: dual problem
Given:

- A computational graph consisting of n, identical operations with integer

ASAP and ALAP times.
- The execution time of the operation on the selected hardware resource t,

- The number of the available resources min„

Find:
- The minimum execution time Tm in .

The solution of dual problem (problem 2.1) can be solved in polynomial time using
the Earliest Deadline List Scheduling algorithm [8].

Given the solution for its dual problem, the original problem (problem 2) can be
solved iteratively as follows:

Algorithm 2: minimum bounds calculation
abs

Set min, to the absolute lower bound mM

*Given min, :
Solve the dual problem to determine the minimum execution time I'm in

If Trn
	

> Tm ax ,
or if no solution

Increment min, , and go to 4̀

Else mm„ = minimum bound.
End algorithm 2.

All the above described techniques can be applied in an approximately identical
fashion for the estimation of the lower bounds of buses and registers. The only
difference is that the formulation will consider the interconnect and storage graphs
instead of the computational graph.

3.3 Solving the TRC Optimization Problem
After calculating lower and upper bounds on all the required hardware resources, we
use the lower bounds to convert the TC optimization problem into an easy to solve
Time and Resource-Constrained (TRC) decision problem with a smaller search
space. 	The TRC decision problem is formulated in terms of an Integer Linear
Programming (ILP) feasibility model which satisfies both the time and the resources
constraints. The notation used in our formulation are defined as follows:

297

Proceedings of the 2"d 10EENG Conference, 23-25 Nov. 1999

- or : a code operation, i = 1,2,3

in a CDFG.
a schedule time or control step, i = 1,2,3 	T, where T is the schedule

length or the over all computation time constraint.
- f 	a functional unit, i = 1,2,3 	 E 	, where Fr is the number of funct onal

unil.s of type t, and t = +,*, alu,....}.
-off E fr indicates that an operation 0i can be mapped to a functional unit of type T.

O. - 	: represents an edge or a partial order between operations o1 , o . implies

that 0. must be executed before 0 .

-x r : a binary variable, its value equals 1 to represent the assignment of a code

operation of to a time step t i , and equals 0 otherwise.

The feasibility model does not ask for an optimum, but asks whether a feasible
solution exists. Then the feasible solution that uses the least amount of resources will
obviously be the optimum one. Thus our formulation includes no objective function
but does have the following set of constraints:

Assignment constraint:
The operation assignment constraint ensures that each operation of will be assigned

to one and only one time step t i .

= 1 	V()
ti e ft(0) 	xo,

i

Precedence constraint:
The precedence constraint prevents an operation o i from being scheduled before

operation 0, whenever there is a partial order between them such that 0, -40 1 .

1 	x 	+ E 	x 	<1
1 > 1 	0 ,1 	1 < t 	0 ,1

	

I 	l 	 i .1
I 6 ,u (0) t 6 p (0)

i 	 I 	I

tit 1.1.(oi)np(oi) 	 (2)

Functional units allocation constraint:
The functional unit allocation constraint ensures that no more than Er functional

units of type t will be required in the solution.

	0, where 0 is the total number of operations

(1)

298

Proceedings of the 2nd ICEENG Conference, 23-25 Nov. 1999
CE-5 	9

o ef o ,t
i 	z- 	i 	i

6 p (O.)

V 2, t 	 (3)

Register allocation constraint:
The register allocation constraint ensures that there are no more than R variables
whose lifetimes overlap while crossing any time step. For each time step, we ignore
possible scheduling of producer-consumer (oi ,oi) pairs that completely lie above or

below the current time step. we accomplish this by canceling out possible schedule
of both producer and consumer in one side of the current time step as follows: Giving
every possible schedule of the producer (consumer) above (below) the current time

step, t rent,
a positive sign. Giving every possible schedule of the produce

(consumer) below (above) the current time step, t rent, a negative sign. Thus the

register allocation constraint calculates twice the number of cross edges (ol -->oi) at

each time step as given below:

E 	(E 	x 	- E 	x
o . . . __>. 	 < t 	o ,t 	 1 	> t 	o ,t

i 	 I 	i 	 i 	 i

i s p(o) 	 t e p (0)
i 	1

x 	- E 	 x)
t 	t o ,1 	 o ,t

j I 	I 	 I I

) 	 t 6/4(0)
I

t >
J

du(
J

2R V t 	(4)

Bus allocation constraint:
The bus allocation constraint ensures that at each time step, no more than B buses are
required to transfer data between functional units and registers. Data broadcasting is
modeled using fixed timing constraints on all pairs of destinations and selecting one of
the destination operations to contribute to the bus count. Thus the number of buses
required at a time step t i equals the number of distinct input and output variables of all

operations assigned to this step.

E 	(in(o) + out(o) x 	< B

	

r) 	i 	i 	0 , r

	

i 	 I 	■

	

t 	e ,u (o)

Vt 	 (5)

Time Constraint
The time constraint on the overall execution time (Tmax.) is imposed explicitly to

prevent scheduling leave operations beyond the time constraint, as follows:

299

Proceedings of the 2" 10EENG Conference, 23-25 Nov. 1999
	cE-9I Ili

(t i 	D - i) 	 Tin ay
I 6 p (0) 	 0 ,

i 	i

V o without successor E; {6)

4. DATA PATH CONSTRUCTION PHASE
In the DPC phase, the operations, the variables, and the data transfers, from the
scheduled CDFG, are bound to a specified instances of the allocated hardware
resources. When binding functional units and registers, the objective is to minimize
the possible increase in area, in terms of the number of induced multiplexer inputs
and tristate buffers. Whereas, when binding buses, the objective is to minimize the
data transfer delay time, in terms of the maximum total loading of the data source
(functional units or registers) and the maximum total loading of the data carrier
(buses) during every phase of the clock cycle.

Operation Binding (OB), Variable Binding (VB), and Data Transfer Binding (DTB►are
tightly related to each other. There is no obvious ordering of these subtasks.
However, we know that the number of induced interconnections between functional
units and buses is determined by both OB and DTB. Also, the number of induced
interconnections between registers and buses is determined by both VB and DTB.
While the interaction between OB, and VB is indirect. In our methodology we
perform OB, and VB separately, while incorporating means for interconnections
minimization in both subtasks. On the other hand, we perform the DTB subtask while
evaluating its effect on the data transfer time, the goal is to balance the load among
data sources and carriers.

The functional units and the registers binding algorithms start with a scheduled
CDFG and ends with a partially synthesized (scheduled and partially bound) data
path as listed below:

Algorithm 3: functional units and registers binding
Cluster the operations/variables in the scheduled CDFG, such that the

scheduling/life time of each operation/variable in a cluster overlaps with
the schedulingfide times of all the operations/variables in the same
cluster.

Construct a Weighted Bipartite Graph (WBG) from the set of the allocated
functional units/registers, and the members of each cluster

Assign the operations/variables of the first cluster to the allocated number of
functional. units/registers simultaneously.

While assigning the remaining clusters, ensures that :
An operation/variable can be assigned to a functional unit/register only if its
schedule/life time does not overlap with the schedule/life times of all

the operations/variable which were already assigned to that functional
unit/register.

If more than one operation/variable is considered for binding, the one that
induces the least increase in interconnection cost is chosen.

End algorithm 3.

300

V1
V 3

Proceedings of the rd ICEENG Conference, 23-25 Nov. 1999 CE-5
	

11

The process for data transfers to buses binding becomes clear after both the
functional units and the registers bindings have been performed. The data transfers
within the partially bound data path are assigned to the allocated number of buses as
follows:

Algorithm 4: data transfers to buses binding
Cluster the transfers in each phase j of each clock cycle i as a set T .

For each transfer set T

Construct a WBG from the set of the allocated buses B, and the members
of the set T .

Assign the data transfer of the first cluster to the allocated number of buses
simultaneously.
While assigning the remaining clusters, ensures that :

data transfer can be assigned to a bus only if its schedule time does not
overlap with the schedule times of all the data transfers which were
already assigned to that bus.

If more than one data transfer is considered for binding, the one that
induces the least increase in the data transfer delay time is chosen.

End algorithm 4

5. SYNTHESIS RESULTS
The 4-point FIR filter is used to demonstrate our methodology, and to verify our
synthesis results. The behavior description of the 4-point FIR filter is given in the
form of its CDFG and a time constraint on its data introduction interval (Tsanipie= 300

ns), as shown in Fig. 2.

k0 	X(n) kl X(n-1) k2 	X(n-2) k3 	X(n-3)
N V 	N 	N IC 	N V

Y(n)

T ample = 300 ns, s
Y(n) = k0 X(n) + k1 X(n-1) + k,, X(n-2) + k3 X(n-3)

Fig. 2 The behavior description of the 4-point FIR filter

Assume that we have manually selected a multiplier of 80 ns, an adder of 40 ns, and
a latch of 20 ns delay times. Then according to Algorithm 1.1, the clock cycle length
will be 20 ns which results in a 280 ns critical path length. Since the resulting critical

301

Proceedings of the 2"d ICEENG Conference, 23-25 Nov. 1999 L CE-5

path length is less than the data introduction interval, no optimizing transformation
will be needed, and the style of the target data path will be non-pipelined.

In order to reduce the search space and to convert the given TC optimization
problem into TRC decision problem , maximum bounds of 4 multipliers, 1 adder, 4
registers, and 8 buses, and minimum bounds of 3 multipliers, 1 adder, 1 register,
and 2 buses are produced using the Minimum Flow algorithm and Algorithm 2
respectively.

The LP feasibility model is then constructed using both the time constraint and the
minimum bounds on the resources. It includes 23 binary variables which are required
to satisfy 66 constraints. The linear programming package of the Mathematica
Environment [9] is used to solve the LP problem. As a result we have obtained an
optimal Scheduling and Allocation (S&A) solution with 3 multipliers, 1 adders, 2
registers, and 2 buses.

Operations to functional units and variables to registers bindings are obtainedi..sing
Algorithm 3. As a result a partially synthesized data path, is obtained with 15 data
transfers. These transfers are bound to the allocated 2 buses using Algorithm 4 to
obtain the finally synthesized data path of the 4-point FIR filter, shown Fig. 3, with 8
tristate buffers and 11 multiplexer inputs. The data transfers are evenly distributed
among the buses, which results in a maximum load of functional units and registers
equal to 1 tristate buffer, and a maximum load of bus equal to 6 multiplexer inputs.

t15 t7,t13 ts,t14

rrom J 	ram

ti,n,t5,t 1 	t2J4,t6,t12
\

V

t9 t o

t1D

\J V V V V V

ml m2 m3 a

t7
	 is 	 t14

	 t13,t15

Fig. 3 The finally synthesized data path .

302

120 240 n 360
I 	u 	1

480 	tl
1

720
U 	,

840 	960 	1080
L 	1 	,

1 1111,11111111111
101.1111.1illf LflJlfU1111

Illa
100000000

0000001
p00000i o
J0000011

0000000 '30000001 130000010 00000011
)0000001 30000010 0000011 130000000
00000010 00000011 000000 0 '90000001

0000011 00000000 r; 	00001 0000001 0
00000000000000 ,]0000000017001110 0000000000001000 0000000000001100

Select Signals

c1=1
c2=0
k0=00000000
k1=00000001
k2=00000010
k3=00000011
xn=00000011
xn_l "00000000
xn_2=00000001
xn_3=00000010
yn=0000000000001000

30G

Proceedings of the 2"d ICEENG Conference, 23-25 Nov. 1999 CE-5 I 13

The IEEE standard Hardware Description Language (VHDL) is used to model both
the behavior and the finally synthesized data path structure [10]. Then both models
are simulated using the VHDL Compiler-Simulator Environment [11]. Simulation
results, shown in Fig. 4, verify that: using a 20 ns clock cycle length, the input data
are up updated every 15 clock cycles and the expected output is produced every 15
clock cycles as well, which indicates a complete coincidence between the
performance of the initially specified behavior and the finally synthesized structure.

Fig. 4. Simulation results of the finally synthesized data path

6. CONCLUSION
The proposed HLS methodology utilizes a Finite State Machine with a Data Path
(FSMD) as a generic target architecture, which uses a bus-based topology for the
data path and a two-phase clocking scheme for the control path. It incorporates two
phases: a Design Space Exploration (DSE) phase and a Data Path Construction
(DPC) phase.

In the DSE phase, the Scheduling and the Allocation (S&A) subtasks are solved
simultaneously, to overcome their tight interaction, which results in an optimal
scheduling that uses the minimum amount of hardware resources and satisfies the
timing constraints. In the DPC phase, the allocated hardware resources are
connected together to construct the data path such that the intended behavior is
implemented, the possible increase in area is minimized, and the time constraints are
preserved.

The demonstrating example has showed that how an optimized data path can be
synthesized from a purely behavior description. Then simulation results have proved
that the finally synthesized data path is truly implementing the initially specified
behavior and satisfying the timing constraints.

303

Proceedings of the rd ICEENG Conference, 23-25 Nov. 1999
	 14

REFERENCES
1- Michael C. McFarland, Alice C. Parker, and Raul Camposano, 'The High-Level

Synthesis of Digital Systems", Proc. IEEE, Vol.78, No.2, PP. 301-318, February
(1990).

2- D.D. Gajski, N. Dutt, A. Wu, and S. Lin, "High-Level Synthesis: Introduction to Chip
and System Design", Kluwer Academic (1992).

3- Hugo De Man, Fracnky Catthoor, Gert Goossens, Jan Vanhoof, Jef Van Meerbergen,
Stefaan Note, and Jos Huisken, "Architecture-Driven Synthesis Techniques for VLSI
Implementation of DSP Algorithms", Proc. IEE, Vol. 78, No. 2, PP. 319-334,
February (1990).

4- Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits", McGraw-Hill,
Inc. (1994).

5- Jan Vanhoof, Karl Van Rompaey, No Goossens, and Hugo De Man, " High-Level
Synthesis for Real-Time Digital Signal Processing", Kluwer Academic Publishers,
(1993).

6- Robert A. Walker, and Samit Chauduri, "Introduction to the Scheduling Problem",
IEEE Design & Test of Computers, PP. 60-69, Summer (1995).

7- M.C. Golulmbic, "Algorithmic Graph Theory and Perfect Graphs", Academic Press,
New York, (1980).

8- Jan M. Rabaey, and Miodray Potkonjak, "Estimating Implementation Bounds for Real
Time DSP Application Specific Integrated Circuits", IEEE Trans. on CAD, Vol. 13,
No. 6, PP 669-683, June (1994).

9- " Mathematica: A System for Doing Mathematics by Computer", Version 2.2, User's
Guide, Wolfram Research, Inc., December (1992).

10- Fawzy Hashim, " High-level Synthesis of Dedicated DSP architectures' Ph.D.
Thesis, Faculty of Engineering, Cairo University, Egypt (1998).

11- Accolade Design Automation's PeakVHDLTM Simulator Demonstrat on, Version
1.14, Accolade Design Automation, Inc., (1998).

304

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

