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ABSTRACT 

In this work we present a proposed High-Level Synthesis (HLS) methodology for 
dedicated Digital Signal Processing (DSP) architectures. Starting from a purely 
behavior description of a DSP algorithm, the HLS subtasks namely: the Scheduling, 
the Allocation, and the Binding are performed to generate an optimized Register 
Transfer Level (RTL) data path structure which implements the intended behavior 
while satisfying the .timing constraints. The Scheduling and the Allocation subtasks 
are solved simultaneously in terms of an Integer Linear 	Programming (ILP) 
feasibility model. The Binding subtask is solved using a Weighted Bipartite 
Matching (WBM) algorithm. A 4-point FIR filter is used to demonstrate our 
methodology in a step wise fashion, from the initially specified behavior to the 
finally synthesized structure. Simulation results have proved that the finally 
synthesized data path is truly implementing the initially specified behavior and 
satisfying the timing constraints. 
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1. INTRODUCTION 
High-Level Synthesis (HLS) bridges the gap between the behavioral description of a 
circuit and its Register Transfer Level (RTL) structure. It starts with the behavioral 
description of the circuit, and a set of constraints and goals to be satisfied, and ends 
with the structure that implements the circuit's behavior while satisfying the goals 
and constraints. HLS consists of a front-end that translates the input behavior 
description into an intermediate representation, usually a graph-based, from which the 
back-end generates the target architecture [1]. The intermediate graph-based 
representation explicitly shows the control and data dependencies within the input 
description in the form of a Control and Data Flow Graph (CDFG). In the CDFG, 
each node represents an operation and each edge represents a data and/or control 
transfer. The back-end, which is the core of the HLS, and the focus of thiE, work, 

involves mainly the following three subtasks: 
Scheduling: determines the sequence in which the operations of the CDFG can be 
executed, by assigning the operations to consective time intervals so called control 
states or clock cycles. It also determines how many states are necessary to 
implement a CDFG, and drives utilization figures for functional, storage, and 
interconnection units. 
Allocation: determines the number of each type of the RTL components to be used 
in the design. For every operation in the CDFG, we need a functional unit that is 
capable to execute the operation. For every variable that is used across several 
control states in the scheduled CDFG, we need a storage unit to hold the data values 
during the variable's life or access time, Finally, for every data transfer in the CDFG, 
we need a set of interconnection units to realize the data transfer. 
Binding: after all operations have been scheduled, and the functional, the storage, 
and the interconnection units have been allocated. Binding assigns the operations, 
the variables, and the data transfers, from the behavioral description, into specified 
instances of the allocated functional, storage, and interconnection units 
respectively. When multiple alternatives exist for assignment, binding algorithm 
selects the one that minimally increases the data path cost. 

Due to the complexity of the HLS problem and the interdependence among its main 
subtasks, different methodologies have emerged with different schemes and 
objectives. The objective of producing suboptimal or globally optimal soli..tioris 
defines the criteria for classifying these synthesis approaches into heuristic or exact 
methodologies. The techniques used to deal with the tight interdependence among 
the HLS subtasks define the criteria for classifying these schemes into independent, 
iterative, and simultaneous schemes [2]. Since the DSP application domain is 
resource dominated, area and delay are determined mainly by resource usage and 
not by a particular binding. Thus we have chosen to solve the Binding (B) subtask, 
which in this case serves only the purpose of refining the structure information for 
connectivity, separately after simultaneously solving the Scheduling and the 
Allocation (S&A) subtasks. In this work we present the formulation of the HLS 
problem, and expose the essential mathematical and graph theoretical techniques 
that we need to optimally perform the subtasks of the back-end of the HLS system. 
We also demonstrate our methodology and verify our synthesis results . 
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2. PROBLEM FORMULATION 
Considering our DSP application domain, which is mainly time-constrained, the HLS 
problem formulation is defined as follows: 

Problem 1: high-level synthesis 
Given: 

- A computational (CDFG) graph describing a digital signal processor 
behavior. 

- A time-constraint on the throughput rate and/or the overall execution time of 
the computation graph on the synthesized architecture. 

- An RTL module library. 

-A minimum cost RTL structure in terms of area, which 
- Implements the given behavior, and 
- Satisfies the time constraints. 

According to the human designer's thoughts in searching for an optimal design, our 
solution methodology is logically partitioned into two phases : a Design Space 
Exploration (DSE) phase, and a Data Path Construction (DPC) phase. These phases 
will be explained in some details in the following two sections. 

3. DESIGN SPACE EXPLORATION PHASE 
In the DSE phase, our design space is explored in the following order : firstly by 
considering different architectural styles, including different types of resources, 
different clock cycle lengths, and different topology considerations to satisfy the 
timing constraints. Secondly by calculating accurate lower and upper bounds on the 
amount of all the required hardware resources to delimit the search space. Thirdly by 
solving the Time and Resource Constrained (TRC) optimization problem in terms of 
an Integer Linear Programming (ILP) feasibility model, where the lower bounds are 
firstly used to account for the resource allocation constraints then resource counts 
are incremented until a feasible schedule which uses the minimum amount of 
resources (optimal schedule) is obtained. The procedures which are involved in the 
DSE are summarized as follows:.  

Algorithm 1: Design.  Space Exploration 
Selebt: an appropriate hardware module set from the RTL library. 
Read : CDFG, parameters of the selected hardware modules, and the time 

constraints. 
Determine: the optimal set of clock cycles. 
Experiment : with different clock cycle lengths within the optimal set to 

obtain the least critical path length (T longest ) 
> T m ax 

Then: Apply optimizing transformation, or 
Restart the design exploration phase with faster hardware modules. 

Else: Calculate lower and upper bounds on all hardware resources, and 
Solve the TRC feasibility model: 

Find: 

If: T longest 
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Is there a S&A solution to satisfy the following set of constraints? 
Assignment constraints 
Precedence constraints 
Resources allocation constraints 
Time constraints 

Non feasible: Increment the number of the heavily utilized 
resources, and Restart the feasibility model again 

Feasible: Start the data path construction phase 
End algorithm 1 

3.1 Determining a Target Architecture Style 
Since HLS implies a huge design space to search, then restricting the HLS towards 
one target, but flexible architecture style, will tighten the design space and make the 
high-level synthesis problem more feasible [3]. Thus we have utilized the Finite State 
Machine with a Data Path (FSMD) model [4], as our generic target architecture. The 
FSMD implementation consists of a Finite State Machine (FSM) called the control 
unit, and a data path. The style of the data path, which is our concern in this work, is 
determined in terms of its primitive modules, clocking requirement, and its topology 
structure as follows: 

Modules selection: Since the number of operation types in the DSP application 
domain is limited. In our methodology , we leave the selection of functional unit types 
to the user or the expert system. For every type of operation in the CDFG, a list of 
the available functional unit types is produced to perform such operation. Then the 
user or the expert system browses and selects at least one from every list: for every 
type covering all the operations types within the CDFG. 

Clock cycle determination: Some of the values which contribute in determining the 
clock period will not be available until at least the floorplanning is done. It is difficult, if 
not impossible, to assess the influence of these factors during HL.S . However, the 
designer must specify a nominal clock period (or at least, the data path component of 
the clock period) before scheduling, realizing that the actual clock period will be 
longer [5]. In our methodology we determine an optimal length for the data path 
component of the clock cycle such that the slack time within each clock cycle is 
minimized, as listed below: 

Algorithm 1.1: clock cycle length determination 
For the selected RTI, module set : 

Find the minimum and maximum values of the clock cycle length such that : 
--- minimum data transfer delay 

c 	-- register-to-register execution delay of the slowest functional unit type. 

For each selected module type : 
Find the set of clock cycle values that integrally divide the module's regi.svr 
to register execution delay, and not less than c 

Ch-S 
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From the previous set of clock cycle values, find the value that produces the 
shortest critical path length of the CDFG, using the unconstrained As Soon As 
Possible (ASAP) scheduling algorithm [ 6]. 

For all module types Find the global value of the clock cycle that corresponds to the 
minimum value of the critical path length : global = Coptimum  

End algorithm 1.1. 

Topology considerations: Our system can support a synthesis of data path 
architecture in both: random topology, which is mux-based structure, and linear 
topology, which is bus-based structure. In random topology architectures, the 
interconnections between registers and functional units are made of point to point 
direct links with multiplexers introduced at appropriate places. A linear topology 
architecture, in contrast, employs a number of buses to implement the 
interconnections. Consequently we have chosen the linear topology style, due to its 
regularity, to implement our target data path. Our target data path comprises three 
major components: functional, storage, and interconnection units, as shown in Fig. 1. 

    

one of the functional units 

    

Bus one of the storage units 

  

ph2 
Fig. 1. The style of our target data path. 

3.2 Calculating Resource Bounds 
In order to calculate resource bounds for all the hardware resources, a storage and 
a connectivity graphs, are induced from the computational CDFG. In the CDFG, 
G (N , E), each node ni  e N represents a code operation, and each edge eu  6 E 

represents a data or control dependency between the operations. In the connectivity 
graph G, (A l e , E,) every node represents an edge in the corresponding CDFG. An 

edge e s E, is defined in G, when there exists a precedence between two 
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interconnection. These precedences can be derived directly from the CDFG. For our 
hardware model, the storage graph Gs ( N , s ), is actually identical in structure to 

the interconnect graph. In the storage graph each node n s e N,. corresponds to a 

variable. The slack time of the node is set to the maximum lifetime of the variable, 

which is equal to (t aiap (dest)- asap  (source) ), with cop(desr): the As Late As 

Possible (ALAP) scheduling time of the variable's destination node, and 

„„p  (source): the As Soon As Possible (ASAP) scheduling time of the variable's 

source node. 

Two operations, variables, or connections can be executed simultaneously when no 
precedence relationship exists between them, or in other words, when no edge exists 
between them in the corresponding graph. Then the maximum possible concurrency 
is obviously equal to the maximum set of nodes without precedence relations or 
equivalently. the maximum independent set. Thus maximum bounds on all hardware 
resources can be transformed into the maximum independent set problem which can 
be solved, for a class of graphs called comparability graphs, in polynomial time 

(O( N 3  )) using the Minimum Flow algorithm [7]. 

Far more important than the maximum implementation bounds on the hardware 
resources, are the minimum implementation bounds. Minimum bounds (theoretically 
optimal) allows us to estimate the absolute minimum area needed for the 
implementation of a given computational graph. It can also serve as an initial seed for 
allocation and design space search process that normally leads to faster 
convergence. Within our frame work, the absolute minimum bound for an execution 

. 
. ohs 	

n r 	r 

unit of type 	r (r = 1 	R) is defined as : 	nun 	= 	[ 
Tmm 

where n,. is the number of operations to be executed on resource r, t r  is the number 

of clock cycles it takes to execute an operation on r, 	is the available time given 

in terms of clock cycles, and 	means rounded up to the nearest integer value. 
The minimum bounds calculation problem for each type of resources is formulated as 

follows: 

Problem 2: minimum bounds calculation 
Given: 

- A computational graph consisting of nr  identical operations with integer 

ASAP and ALAP times 
- The execution time of the operation on the selected hardware resource 

- 	The available time constraint TM < 

Find: 
- The minimum number of resources in in,. needed to complete the operations 

within the available time. 
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This minimum bounds calculation problem cannot be solved directly, but can be 
defined as an iterative version of its dual formulation as follows: 

Problem 2.1: dual problem 
Given: 

- A computational graph consisting of n, identical operations with integer 

ASAP and ALAP times. 
- The execution time of the operation on the selected hardware resource t, 

- The number of the available resources min„ 

Find: 
- The minimum execution time Tm in . 

The solution of dual problem (problem 2.1) can be solved in polynomial time using 
the Earliest Deadline List Scheduling algorithm [8]. 

Given the solution for its dual problem, the original problem (problem 2) can be 
solved iteratively as follows: 

Algorithm 2: minimum bounds calculation 
abs 

Set min, to the absolute lower bound mM 
 

*Given min, : 
Solve the dual problem to determine the minimum execution time I'm in  

If Trn 
	

> Tm ax , 
or if no solution 

Increment min, , and go to 4̀  

Else mm„ = minimum bound. 
End algorithm 2. 

All the above described techniques can be applied in an approximately identical 
fashion for the estimation of the lower bounds of buses and registers. The only 
difference is that the formulation will consider the interconnect and storage graphs 
instead of the computational graph. 

3.3 Solving the TRC Optimization Problem 
After calculating lower and upper bounds on all the required hardware resources, we 
use the lower bounds to convert the TC optimization problem into an easy to solve 
Time and Resource-Constrained (TRC) decision problem with a smaller search 
space. 	The TRC decision problem is formulated in terms of an Integer Linear 
Programming (ILP) feasibility model which satisfies both the time and the resources 
constraints. The notation used in our formulation are defined as follows: 
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- or  : a code operation, i = 1,2,3 

in a CDFG. 
a schedule time or control step, i = 1,2,3 	T, where T is the schedule 

length or the over all computation time constraint. 
- f 	a functional unit, i = 1,2,3 	 E 	, where Fr  is the number of funct onal 

unil.s of type t, and t = +,*, alu,....}. 
-off  E fr  indicates that an operation 0i  can be mapped to a functional unit of type T. 

O. - 	: represents an edge or a partial order between operations o1 , o . implies 

that 0. must be executed before 0 . 

-x r  : a binary variable, its value equals 1 to represent the assignment of a code 

operation of  to a time step t i  , and equals 0 otherwise. 

The feasibility model does not ask for an optimum, but asks whether a feasible 
solution exists. Then the feasible solution that uses the least amount of resources will 
obviously be the optimum one. Thus our formulation includes no objective function 
but does have the following set of constraints: 

Assignment constraint: 
The operation assignment constraint ensures that each operation of  will be assigned 

to one and only one time step t i  . 

= 1 	V() 
ti e ft(0 ) 	xo, 

i 
 

Precedence constraint: 
The precedence constraint prevents an operation o i  from being scheduled before 

operation 0, whenever there is a partial order between them such that 0, -40 1 . 

1 	x 	+ E 	x 	<1 
1 > 1 	0 ,1 	1 < t 	0 ,1 

	

I 	l 	 i .1 
I 6 ,u (0 ) t 6 p (0 ) 

i 	 I 	I 

tit 1.1.(oi )np(oi ) 	 (2) 

Functional units allocation constraint: 
The functional unit allocation constraint ensures that no more than Er  functional 

units of type t will be required in the solution. 

	0, where 0 is the total number of operations 

(1) 
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o ef o ,t 
i 	z- 	i 	i 

6 p (O.  ) 

V 2, t 	 (3) 

Register allocation constraint: 
The register allocation constraint ensures that there are no more than R variables 
whose lifetimes overlap while crossing any time step. For each time step, we ignore 
possible scheduling of producer-consumer (oi  ,oi ) pairs that completely lie above or 

below the current time step. we accomplish this by canceling out possible schedule 
of both producer and consumer in one side of the current time step as follows: Giving 
every possible schedule of the producer (consumer) above (below) the current time 

step, t rent, 
a positive sign. Giving every possible schedule of the produce 

(consumer) below (above) the current time step, t rent, a negative sign. Thus the 

register allocation constraint calculates twice the number of cross edges (ol  -->oi) at 

each time step as given below: 

E 	( E 	x 	- E 	x 
o . . . __>. 	 < t 	o ,t 	 1 	> t 	o ,t 

i 	 I 	i 	 i 	 i 

i  s p(o) 	 t e p (0 ) 
i 	1 

x 	- E 	 x 	) 
t 	t o ,1 	 o ,t 

j I 	I 	 I I 

) 	 t 6/4(0 ) 
I 

t > 
J 

du( 
J 

2R V t 	(4) 

Bus allocation constraint: 
The bus allocation constraint ensures that at each time step, no more than B buses are 
required to transfer data between functional units and registers. Data broadcasting is 
modeled using fixed timing constraints on all pairs of destinations and selecting one of 
the destination operations to contribute to the bus count. Thus the number of buses 
required at a time step t i  equals the number of distinct input and output variables of all 

operations assigned to this step. 

E 	( in(o ) + out(o ) x 	< B 

	

r) 	i 	i 	0 , r 

	

i 	 I 	■ 

	

t 	e ,u (o ) 

Vt 	 (5) 

Time Constraint 
The time constraint on the overall execution time (Tmax.) is imposed explicitly to 

prevent scheduling leave operations beyond the time constraint, as follows: 
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(t i 	D - i) 	 Tin ay 
I 6 p ( 0 ) 	 0 , 

i 	i 

V o without successor E; {6) 

4. DATA PATH CONSTRUCTION PHASE 
In the DPC phase, the operations, the variables, and the data transfers, from the 
scheduled CDFG, are bound to a specified instances of the allocated hardware 
resources. When binding functional units and registers, the objective is to minimize 
the possible increase in area, in terms of the number of induced multiplexer inputs 
and tristate buffers. Whereas, when binding buses, the objective is to minimize the 
data transfer delay time, in terms of the maximum total loading of the data source 
(functional units or registers) and the maximum total loading of the data carrier 
(buses) during every phase of the clock cycle. 

Operation Binding (OB), Variable Binding (VB), and Data Transfer Binding (DTB►are 
tightly related to each other. There is no obvious ordering of these subtasks. 
However, we know that the number of induced interconnections between functional 
units and buses is determined by both OB and DTB. Also, the number of induced 
interconnections between registers and buses is determined by both VB and DTB. 
While the interaction between OB, and VB is indirect. In our methodology we 
perform OB, and VB separately, while incorporating means for interconnections 
minimization in both subtasks. On the other hand, we perform the DTB subtask while 
evaluating its effect on the data transfer time, the goal is to balance the load among 
data sources and carriers. 

The functional units and the registers binding algorithms start with a scheduled 
CDFG and ends with a partially synthesized ( scheduled and partially bound ) data 
path as listed below: 

Algorithm 3: functional units and registers binding 
Cluster the operations/variables in the scheduled CDFG, such that the 

scheduling/life time of each operation/variable in a cluster overlaps with 
the schedulingfide times of all the operations/variables in the same 
cluster. 

Construct a Weighted Bipartite Graph (WBG) from the set of the allocated 
functional units/registers, and the members of each cluster 

Assign the operations/variables of the first cluster to the allocated number of 
functional. units/registers simultaneously. 

While assigning the remaining clusters, ensures that : 
An operation/variable can be assigned to a functional unit/register only if its 
schedule/life time does not overlap with the schedule/life times of all 

the operations/variable which were already assigned to that functional 
unit/register. 

If more than one operation/variable is considered for binding, the one that 
induces the least increase in interconnection cost is chosen. 

End algorithm 3. 

300 



V1  
V 3 

 

Proceedings of the rd  ICEENG Conference, 23-25 Nov. 1999 CE-5 
	

11 

The process for data transfers to buses binding becomes clear after both the 
functional units and the registers bindings have been performed. The data transfers 
within the partially bound data path are assigned to the allocated number of buses as 
follows: 

Algorithm 4: data transfers to buses binding 
Cluster the transfers in each phase j of each clock cycle i as a set T . 

For each transfer set T 

Construct a WBG from the set of the allocated buses B, and the members 
of the set T . 

Assign the data transfer of the first cluster to the allocated number of buses 
simultaneously. 
While assigning the remaining clusters, ensures that : 

data transfer can be assigned to a bus only if its schedule time does not 
overlap with the schedule times of all the data transfers which were 
already assigned to that bus. 

If more than one data transfer is considered for binding, the one that 
induces the least increase in the data transfer delay time is chosen. 

End algorithm 4 

5. SYNTHESIS RESULTS 
The 4-point FIR filter is used to demonstrate our methodology, and to verify our 
synthesis results. The behavior description of the 4-point FIR filter is given in the 
form of its CDFG and a time constraint on its data introduction interval ( Tsanipie= 300 

ns), as shown in Fig. 2. 

k0 	X(n) kl  X(n-1) k2 	X(n-2) k3 	X(n-3) 
N V 	N 	N IC 	N V 

Y(n) 

T ample = 300 ns, s  
Y(n) = k0 X(n) + k1  X(n-1) + k,,  X(n-2) + k3  X(n-3) 

Fig. 2 The behavior description of the 4-point FIR filter 

Assume that we have manually selected a multiplier of 80 ns, an adder of 40 ns, and 
a latch of 20 ns delay times. Then according to Algorithm 1.1, the clock cycle length 
will be 20 ns which results in a 280 ns critical path length. Since the resulting critical 
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path length is less than the data introduction interval, no optimizing transformation 
will be needed, and the style of the target data path will be non-pipelined. 

In order to reduce the search space and to convert the given TC optimization 
problem into TRC decision problem , maximum bounds of 4 multipliers, 1 adder, 4 
registers, and 8 buses, and minimum bounds of 3 multipliers, 1 adder, 1 register, 
and 2 buses are produced using the Minimum Flow algorithm and Algorithm 2 
respectively. 

The LP feasibility model is then constructed using both the time constraint and the 
minimum bounds on the resources. It includes 23 binary variables which are required 
to satisfy 66 constraints. The linear programming package of the Mathematica 
Environment [9] is used to solve the LP problem. As a result we have obtained an 
optimal Scheduling and Allocation (S&A) solution with 3 multipliers, 1 adders, 2 
registers, and 2 buses. 

Operations to functional units and variables to registers bindings are obtainedi..sing 
Algorithm 3. As a result a partially synthesized data path, is obtained with 15 data 
transfers. These transfers are bound to the allocated 2 buses using Algorithm 4 to 
obtain the finally synthesized data path of the 4-point FIR filter, shown Fig. 3, with 8 
tristate buffers and 11 multiplexer inputs. The data transfers are evenly distributed 
among the buses, which results in a maximum load of functional units and registers 
equal to 1 tristate buffer, and a maximum load of bus equal to 6 multiplexer inputs. 

t15 t7,t13 ts,t14 

rrom  J 	ram 

ti,n,t5,t 1 	t2J4,t6,t12 
\ 

V  

t9 t o 

t1D 

\J V V V V V 

ml m2 m3 a 

t7 
	 is 	 t14 

	 t13,t15 

Fig. 3 The finally synthesized data path . 
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The IEEE standard Hardware Description Language (VHDL) is used to model both 
the behavior and the finally synthesized data path structure [10]. Then both models 
are simulated using the VHDL Compiler-Simulator Environment [11]. Simulation 
results, shown in Fig. 4, verify that: using a 20 ns clock cycle length, the input data 
are up updated every 15 clock cycles and the expected output is produced every 15 
clock cycles as well, which indicates a complete coincidence between the 
performance of the initially specified behavior and the finally synthesized structure. 

Fig. 4. Simulation results of the finally synthesized data path 

6. CONCLUSION 
The proposed HLS methodology utilizes a Finite State Machine with a Data Path 
(FSMD) as a generic target architecture, which uses a bus-based topology for the 
data path and a two-phase clocking scheme for the control path. It incorporates two 
phases: a Design Space Exploration (DSE) phase and a Data Path Construction 
(DPC) phase. 

In the DSE phase, the Scheduling and the Allocation (S&A) subtasks are solved 
simultaneously, to overcome their tight interaction, which results in an optimal 
scheduling that uses the minimum amount of hardware resources and satisfies the 
timing constraints. In the DPC phase, the allocated hardware resources are 
connected together to construct the data path such that the intended behavior is 
implemented, the possible increase in area is minimized, and the time constraints are 
preserved. 

The demonstrating example has showed that how an optimized data path can be 
synthesized from a purely behavior description. Then simulation results have proved 
that the finally synthesized data path is truly implementing the initially specified 
behavior and satisfying the timing constraints. 
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