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ABSTRACT 
In this paper, a Neural Network Model is designed for the classification of normal and 
abnormal electrocardiography (ECG) signals. Linear Prediction Coding (LPC) is used 
for extracting the features of the signals generated from each patient. The features 
of the signals are applied as inputs to train and test the Neural Network. Different 
Neural Network architectures investigated in order to achieve a better performance. 
Test results show that, the classification accuracy of the network can reach 98 %. 
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1. INTRODUCTION 
The use of Neural Network systems in ECG signal analysis offers several 
advantages over conventional techniques. First, a Neural Network can perform the 
necessary transformation and clustering operations automatically and 
simultaneously. Second, a Neural Network is able to recognize complex and 
nonlinear groups in the hyperspace. This is a distinct advantage over many 
conventional techniques. Third, a Neural Network is massively parallel in nature and 
can easily operate in real-time scenarios [1]. 

Neural Networks models have been used in the domain of cardiology such as 
myocardial infraction prediction [2], [3], ECG classification [4], [5], detection and 
recognition of abnormal electrocardiograms [6], [7], model and diagnosis 
cardiovascular systems [8], training of ECG signals [9], and analysis of serial cardiac 
enzyme data [10], [11]. 

In this paper, we study the effect of changing the architecture of a proposed Neural 
Network model applied to cardiology. There are two main stages: feature extraction 
and classification. In the first stage, Linear Prediction Coding (LPC) is used for 
feature extraction where its linear predictive coefficients act as features for the 
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measured ECG signals [12]. In the second stage, the Back Propagation Neural 
Network (BPN) is used as a tool to learn the cases, and based upon the extracted 
linear prediction coefficients it can classify the type of the ECG's signals. 

Linear Prediction Coding (LPC) has been successfully used by others for ECG 
feature extraction [12], QRS feature extraction [13], Computer based feature 
extraction and diagnosis of special electronic signals [14], speech recognition [15], 
and myoelectric signal analysis [16]. The use of LPC coefficients increases the 
discrimination capability of the Neural Network classifier without drastically increasing 
the Neural Network architecture complexity [1]. 

The feedforward, Back Propagation Network (BPN) is the most widely network used 
for classification. It is the most popular, effective, and easy to learn model for 
complex, multilayered networks. This network is used more than all other combined. 
It is used in many different types of applications. It has spawned a large class of 
network types with many different topologies and training methods. Its greatest 
strength is in non-linear solutions to ill-defined problems [17]. 

2. THE APPLICATION PROBLEM 

2.1 Nature 
The ECG is an important tool for providing information about the heart. It can provide 
evidence to support a diagnosis, and therefore management, of abnormal cardiac 
rhythms. Conventional ECG diagnosis depends on the experience of a doctor, 
therefor, it may suffer from errors. A solution for this problem is to use a Neural 
Network system to implement the diagnosis process. This helps specialists to reach 
their final diagnosis decision in a faster, easier, and more accurate way. 

2.2 Data Collection 
The ECG, however, is a nonlinear signal generated from the human body. The 
electrical signal from the heart is detected as the surface of the body through five 
electrodes, which are joined to the ECG recorder by wires. One electrode is attached 
to each limb and one is held by suction to the front of the chest and moved to 
different positions. Using a data acquisition card, a group of ECG signals for different 
patients have been collected and converted to digital signals, then applied as inputs 
to the proposed Neural Network model. 

2.3 Input Measurements 

The input of the network is the Linear Predictive Coding (LPC) coefficients resulted 
from the preprocessing of the collected ECG signals as mentioned in 3.1. 

2.4 Output Decision 
The proposed model has the ability to distinguish between normal and abnormal 
persons. Also, it classifies the type of the disease whether it is Myocardial Infraction, 
Hyper Kalenia, Digitalis Toxicity, or Angina Pectoris. 

3. THE PROPOSED SYSTEM 

Figure 1 illustrates the block diagram of the proposed system. 

313 



Proceedings of the 2nd  ICEENG Conference, 23-25 Nov. 1999 CE-7 

ECG Input 
Signals 

Extracted 
Features 

*Output 

Artificial Neural 
Network 

Classification 
Model 

ECG 
Preprocessing • 

Input to 
ANN 

Decision 

Fig. 1 : Block diagram of the proposed system. 

3.1 ECG Preprocessing (Feature Extraction) 

The main objective of the preprocessing is to extract a minimal set of parameters 
which adequately represents each ECG signal without sacrificing classification 
performance of the ANN classifier. Using a minimal set of ECG features allows for a 
reduction in the size of the ANN, which is desirable for real-time implementation of 
the classifier. These ECG feature parameters are used as training and test inputs to 
the ANN classification model [1]. 

The basic idea behind the linear prediction method in ECG signal analysis is that a 
sample ECG data can be approximated as a linear combination of past ECG 
samples. The structure of this concept is illustrated in figure 2. 

The actual ECG sequence s(i) can be approximated by another sequence "‘ (i) which 
is determined by a unique set of predictor coefficients and the past P samples s(i) 
[13]. That is, 

(i) = ia(k)*s(i— k) 	 (1) 
k=1 

where a(k) is kth linear predictive coefficients (LPC). These coefficients are used as 
weighting factors in a linear combiner as shown in figure 2. 

P past values of s 

Predicted 
Output g (i) 

Fig. 2 : Pth order linear predictive mechanism 

Table 1 shows the changes in the linear predictive coefficients sets for prediction 
order P for P=5 to P=9 coefficients. In figure 3, the ECG signal and its linear 
prediction coefficients for various order are compared. 
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Table 1 The results of linear prediction coefficients 

P=5 
LPC coefficients 

P=6 
LPC coefficients 

P=7 
LPC coefficients 

P=8 
LPC coefficients 

P=9 
LPC coefficients 

a(0) = 1.0 a(0) = 1.0 a(0) = 1.0 a(0) = 1.0 a(0) = 1.0 
a(1) = -0.8210 a(1) = -0.9509 a(1) = -0.9638 a(1) = -0.9630 a(1) = -0.9627 
a(2) = -0.5341 a(2) = -0.4440 a(2) = -0.4185 a(2) = -0.4265 a(2) = -0.4263 
a(3) = 0.2939 a(3) = 0.1950 a(3) = 0.1917 a(3) = 0.2055 a(3) = 0.2003 
a(4) = -0.2677 a(4) = -0.0881 a(4) = -0.0805 a(4) = -0.0823 a(4) = -0.0734 
a(5) = 0.3861 a(5) = 0.6623 a(5) = 0.6452 a(5) = 0.6494 a(5) = 0.6482 

a(6) = -0.3365 a(6) = -0.3731 a(6) = -0.3821 a(6) = -0.3792 
a(7) = 0.0385 a(7) = 0.0177 a(7) = 0.0119 

a(8) = 0.0215 a(8) = 0.0083 
a(9) = 0.0137 

LOG 
(db) 

frequency 

Fig. 3 : ECG sampled for several values of predictor order P 

3.2 ANN Classification Model 

A three-layer, feed-forward Back Propagation Neural Network model is created. The 
creation performed using Neural Works Professional II/PLUS format [18]. 

3.2.1 Network architecture 

The architecture of the proposed network is achieved by determining the number of 
processing elements (PEs) in each layer, number of hidden layers, and the layer 
parameters (Learning Rule, Transfer Function, Noise Function, Summation Function, 
and Error Function) for each layer. 

The weights associated to the interconnections among the neurons represent the 
implicit knowledge contained in the network. This knowledge is the result of training, 
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which is performed until reaching the desired response. High performance network is 
achieved, when it passes the test examples with acceptable accuracy. 

3.2.2 Initial network architecture 

A three-layer, feed-forward Back Propagation model is created, consisting of an input 
layer, one hidden layer, and an output layer with the number of PEs in the input 
layer=5, in the hidden layer=5, and in the output layer=5, as shown in figure 4. Each 
unit in the network is connected to all units in the layers above its own (fully 
interconnected). Each connection has a positive or negative weight associated with 
it. The layer parameters are as follows :- 

3.2.2.1 Learning rule 

Delta rule as a learning rule. 

3.2.2.2 Summation function 

Weighted sum, which is the traditional sum of the effective inputs . 
n 

net = 	ANT ;  xi 	 (2) 
i = I 

where : 
Wi : the weight. 
X; : 	the input. 
net : the output of the summation function. 

3.2.2.3 Transfer function 

Each unit in the hidden layer and the output layer thresholds a weighted sum of its 
inputs to get an output by applying a Sigmoid function defined by : 

1 

(1+e knd ) 
	 (3) 

where k is a positive constant that controls the spread of the sigmoid function. 

3.2.2.4 Noise function 

Uniform distributed noise function is used as a noise function. 

3.2.2.5 Error function 

Standard error function is used. It does not perform any transformation for the error. 
It is defined by : 

(4) 
1 

where : 
the jth  component of the actual output vector. 

T, : 	the jth  component of the desired output vector 

f(net) — 
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Fig. 4 : Initial model architecture 

The initial architecture of the proposed model is changed, to reach suitable 
architectures that improves the performance, by changing :- 
1.The number of processing elements in the input layer, i.e., changing the number 

of linear predictive coding (LPC) coefficients. 
2.The number of hidden layers. 
3.The number of processing elements in the hidden layers. 
4.The layer parameters of the hidden layer, and the output layer. 

3.2.3 Input layer design 

The input layer of the network has a number of processing elements which is equal 
to the number of Linear Predictive Coding (LPC) coefficients. The LPC coefficients 
are the result of the preprocessing of the acquired ECG signals [12]. The suitable 
number of LPC coefficients has been chosen according to the minimum Root Mean 
Square error (RMS). LPC has been taken equal to 5, 6, 7, 9, 12, 15, and 20 
coefficients respectively. Figure 5 shows networks with different number of LPC 
coefficients and their corresponding root mean square error. It has been noticed that, 
the error degraded gracefully as the number of LPC coefficients increases. It has 
been found that there is no remarkable error reduction after using 15 LPC 
coefficients. So, only 15 LPC coefficients have been chosen [12]. 
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2 
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6 	7 	9 	12 	15 	20 
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Figure 5 : The suitable number of LPC coefficients 
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3.2.4 Hidden layers design 

The design of the hidden layer means the choice of : 
1- Number of hidden layers 
2- Number of PEs in each hidden layer 

3.2.4.1 Number of hidden layers 

Recent researches into Back Propagation Networks shows that almost any function 
can be synthesized using a sufficiently complex Back Propagation Network with a 
single hidden layer. A good general principle is to design the least complicated 
network that provides good results. Sometimes a network with two hidden layers and 
fewer total PEs can do just as well as a more complicated network with a single 
hidden layer. Having less PEs has some performance advantages, in particular, 
requiring less memory and providing faster convergence [18]. 

We design the proposed model for the number of hidden layers by using none 
hidden layers, one hidden layer, and two hidden layers, and test the RMS at each 
case as shown in figure 6. It was found that the RMS decreases when using one 
hidden layer, so, one hidden layer is the best choice for the number of hidden layers. 

Figure 6 : The suitable number of hidden layers leading to a minimum RMS 

3.2.4.2 Number of PEs on the hidden layer 

The design of the number of processing elements in the hidden layer follows the 
following algorithm [19]: 

Stepl : Start with a number of neurons which is definitely too small . 
Step2 : Train and test the network 
Step3 : Record its performance 
Step4 : Then slightly increase the number of hidden neurons , and train 

and test again. 
Step6 : Repeat 1-4 until the error is acceptably small , or no significant 

improvement is noticed , whichever come first. 

The number of neurons in the hidden layer has been chosen according to minimum 
root mean square error. We start with 6 neurons and increase this number until 15 
neurons. Figure 7 shows different networks and their corresponding root mean 
square error. It was found that 7 PEs would lead to the minimum RMS error. 
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Figure 7 : The suitable number of hidden neurons leading to a minimum RMS 

3.2.5 Output layer design 
The last layer, output layer, has five PEs which corresponding to the five Output 
classes (Normal, Myocardial Infraction, Hyper Kalenia, Digitalis Toxicity, and Angina 
Pectoris). 

3.2.6 Training technique 
The aim of training an ANN is to adjust the weights and the bias. Training is 
performed by a training algorithm. There are two approaches to train an ANN 
Supervised Training, and Unsupervised Training. 

The proposed model is a Back Propagation model that uses a supervised training 
technique. In supervised training, both the inputs and the outputs are provided. The 
network then processes the inputs and compares its resulting outputs against the 
desired outputs. Errors are then propagated back through the system, causing the 
system to adjust the weights which control the network. 

3.2.7 Training examples 

There are five groups of examples to train and test the network which correspond to 
the Normal, Myocardial Infraction, Hyper Kalenia, Digitalis Toxicity, and Angina 
Pectoris cases. The available number of training examples, eighty fife, has been 
divided into fifty training examples, and thirty fife test examples. 

The train and test files have been written in PROFESSIONS II/PLUS format [18], 
each row in the file consists of a number of LP coefficients, forms the input vector, 
paired with the desired target vector. The input vector is separated from the target 
vector by the "&" sign. The number of LP coefficients that were tried are 5, 6, 7, 9, 
12, 15, and 20 coefficients. 

3.2.8 System performance 

Neural network does not always give the exact result you desire. It is for that reason 
ANNs used in applications where humans are also unable to be always right [18]. In 
this study, the network performance is analyzed during both the training and test 
phase. 
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During the training phase, the network needs a number of training cycle to meet the 
convergence criterion, this number gives an idea about Convergence Time (Number 
of Cycles). Low convergence time means that the network is trained over the set of 
examples, and it understands the trained examples completely up to the desired 
error level. 

CE -7 	9 

The test phase is one way of determining how will the network has learned, and 
perform. During the test phase, the test cases are presented to the network and the 
network provides output. Based on this output and the known desired output, the 
Root mean Square error (RMS), and classification accuracy of the network are 
measured. 

3.2.8.1 Root Mean Square error (RMS) 
The root mean square error adds up the squares of the errors for each PE in the 
output layer, divides by the number of PEs in the output layer to obtain an average, 
and then takes the square root of that average. Hence the name root mean square. 
The squaring of the errors get rid of the sign of the error, but increase the magnitude. 
The square root removes the increase of the magnitude resulting from the squaring 
operation, leaving the absolute value. 

RMS = 
=1 

E (T; _0)2  
J=1 

N 
(5) 

Where : 
0j: the ith  component of the actual output vector. 

: the jth  component of the desired output vector. 
N: number of PEs in the output layer. 
P : number of patients (test examples). 

3.2.8.2 Classification accuracy 
Reject a true / Accept a false (type I / type II) errors are one of the common aspects 
for any system. Type I error represents False Reject Rate (FRR) which is the error 
rate when the system rejects a true case, while type II error represents False Accept 
Rate (FAR) which is the error rate when the system accepts a false case [20]. 

In this paper, the classification accuracy of the system represents the true rate when 
the system accepts a true case, i.e., for a number of patients equal to P the FRR, 
FAR, and accuracy are defined by : 

FRR = FR 
P 

FA 
FAR = 

P 

Accuracy = [ 1 — ( FRR + FAR )]* 100% 
Where : 

FR : the number of false reject patients. 
FA : the number of false accept patients. 

(6)  

(7)  

(8)  
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3.2.9 Layer parameters 

There are five major components, which make up an artificial neuron, Learning Rule, 
Transfer Function, Noise Function, Summation Function, and Error Function. These 
components are valid whether the neuron is used for input, output, or is in one of the 
hidden layers. In the initial proposed model the layer parameters are as follows :-
Learning Rule : Delta Rule, Transfer Function : Sigmoid, Summation Function : Sum, 
Error Function : Standard, and Noise Function : Uniform. 

3.2.10 Changing layer parameters of the proposed model: 

The purpose of changing the layer parameters is to reach a suitable architecture that 
improves the performance (higher Accuracy, smaller Root Mean Square error, and 
less Convergence Time). Changing layer parameters is achieved by changing 
learning rule, transfer function, summation function, noise function, and error 
function. 

3.2.10.1 Learning rule 

The Learning Rule specifies how connection weights are changed during the 
learning process. The purpose of the learning rule is to modify the variable 
connection weights on the inputs of each processing element (PE) according to 
some algorithms. For the Back Propagation Neural Network there are three learning 
rules :- the Delta Rule, the Cumulative Delta Rule, and the Normalized Cumulative 
Delta Rule 

3.2.10.2 Summation function 

The first step in a processing element's operation is to compute the weighted sum of 
all inputs. Available summation functions are :- Weighted sum, and Cumulative 
Summation. 

3.2.10.3 Transfer function 

The transfer function is a non-linear function that transfers the internally generated 
sum of each processing element to a potential value. The result of the summation 
function is transformed to a working output through an algorithmic process known as 
a transfer function. Available transfer functions are :- Sigmoid, and Tangent 
Hyperbolic (TanH). 

3.2.10.4 Noise function 

The noise function is normally referred to as "temperature" of the artificial neurons. 
Available noise functions are :- Uniform, Gaussian, and None (Noise=0). 

3.2.10.5 Error function 

In most learning networks the difference between the current output and the desired 
output is calculated. This raw error is then transformed by the error function to match 
a particular network architecture. Available error functions are :- Standard, Quadratic, 
Cubic, and Tolerant. 

Table 2 represents some of the examined models and their corresponding layer 
parameters. The examination process starts from an initial model refereed to as 
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Model 1. By changing the layer parameters other models are obtained. Table 2 
contains 32 of these models. 

Table 2 : Some Models and their corresponding layer parameters 

Network Layer Parameters 
Learning 

Rule 
Transfer 
Function 

Noise 
Function 

Error 
Function 

Sum. 
Function 

Modell Delta Sigmoid Uniform Standard Sum 
Model 2 Cum Sigmoid Uniform Standard Sum 
Model 3 Norm Sigmoid Uniform Standard Sum 
Model 4 Delta TanH Uniform Standard Sum 
Model 5 Cum TanH Uniform Standard Sum 
Model 6 Norm TanH Uniform Standard Sum 
Model 7 Delta Sigmoid Gaussian Standard Sum 
Model 8 Delta Sigmoid None Standard Sum 
Model 9 Cum Sigmoid Gaussian Standard Sum 
Model 10 Cum Sigmoid None Standard Sum 
Model 11 Norm Sigmoid Gaussian Standard Sum 
Model 12 Norm Sigmoid None Standard Sum 
Model 13 Delta TanH Gaussian Standard Sum 
Model 14 Delta TanH None Standard Sum 
Model 15 Cum TanH Gaussian Standard Sum 
Model 16 Cum TanH None Standard Sum 
Model 17 Norm TanH Gaussian Standard Sum 
Model 18 Norm TanH None Standard Sum 
Model 19 Delta Sigmoid Uniform Quadratic Sum 
Model 20 Delta Sigmoid Uniform Cubic Sum 
Model 21 Delta Sigmoid Uniform Tolerant Sum 
Model 22 Cum Sigmoid Uniform Quadratic Sum 
Model 23 Cum Sigmoid Uniform Cubic Sum 
Model 24 Cum Sigmoid Uniform Tolerant Sum 
Model 25 Norm Sigmoid Uniform Quadratic Sum 
Model 26 Norm Sigmoid Uniform Cubic Sum 
Model 27 Norm Sigmoid Uniform Tolerant Sum 
Model 28 Delta TanH Uniform Quadratic Sum 
Model 29 Delta Sigmoid Gaussian Quadratic Sum 
Model 30 Delta TanH None Cubic Sum 
Model 31 Cum TanH Gaussian Cubic Sum 
Model 32 Delta Sigmoid Uniform Standard Cum Sum 

4. EXPERIMENTAL RESULTS 
The experimental results presented in this study, for classification of normal and 
abnormal ECG signals, were based on data for eighty fife patients. Linear predictive 
coding (LPC) coefficients extracted from each ECG signal, are utilized to train and 
test the proposed neural network classifier. The network was written in the 
PROFESSIONS II/PLUS format [18], and implemented on a PC Pentium 233 MHz 
Computer. 
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A three-layer, feed-forward Back Propagation model was created. It has an 'nitial 
architecture consisting of an input layer, one hidden layer, and an output layer The 
number of PEs in the input layer=5, the number of PEs in the hidden layer=5, and 
the number of PEs in the output layer=5. The layer parameters are :- Delta rule as a 
learning rule, Sigmoid as a transfer function, Weighted sum as a summation 
function, Uniform as a noise function, and Standard as an error function. 

The performance of the network was evaluated by three different parameters: 
accuracy, root mean square error (RMS), and number of cycles (convergence time). 
Based on try and error technique, the architecture of the initial model has been 
changed to reach a suitable architecture that improves the performance. It has been 
noticed that :- 
1.The RMS error degraded gracefully as the number of LPC coefficients increases. 

There is no remarkable error reduction after using 15 LPC coefficients. So, only 
15 LPC coefficients have been chosen. 

2.The RMS error decreases when using one hidden layer, so, one hidden layer is 
the best choice for the number of hidden layers. 

3.The number of PEs in the hidden layer leads to a minimum RMS error is equal to 
7 PEs. 

The results of changing the layer parameters are summarized in table 3. 

CE-7 12 

Table 3 : Some Models and their Performance 

Network RMS Accuracy No. of Cycles 
Model 1 1.155864 98 % 70473 
Model 2 1.206985 98 % 134674 
Model 3 2.018764 94 % 490972 
Model 4 1.693075 96 % 19323 
Model 5 1.381727 98 % 65565 
Model 6 1.633462 94 % 188526 
Model 7 1.173183 98 % 52537 
Model 8 1.155864 98 % 70311 
Model 9 1.213655 98 % 185311 

Model 10 1.260578 96 % 172341 
Model 11 1.840695 92 % 660069 
Model 12 1.431283 96 % 640375 
Model 13 1.772098 94 % 13534 
Model 14 2.093762 94 % 20560 
Model 15 1.644504 92 % 53406 
Model 16 1.565251 94 % 33320 
Model 17 1.244459 98 % 173031 
Mode18 1.412616 94  % 200311 
Model 19 1.636765 94 % 25875 
Model 20 2.28209 94 % 25795 
Model 21 1.189504 98 % 56031 
Model 22 1.735934 94 % 55350 
Model 23 2.30464 92 % 62058 
Model 24 1.148306 98 % 186042 
Model 25 2.00747 94 % 188432 
Model 26 2.590554 94  % 188406 
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Model 27 2.019781 94 % 521309 
Model 28 1.529237 96 % 8712 
Model 29 1.538362 98 / 21820 
Model 30 1.89918 98 / 9056 
Model 31 1.983665 98 % 16144 
Model 32 - - No Convergence 

Figure 8 shows that, the layer parameters of Models 1, 2, 5, 7, 8, 9, 10, 17, 21, 24, 
29, 30 and 31 lead to a higher accuracy. 

Fig. 8 : Effect of changing Architecture on Accuracy 

Figure 9 shows that, the layer parameters of Model 28, and 30 lead to a less 
convergence time (number of cycles). 

Fig. 9 : Effect of changing Architecture on No. of Cycles 
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Figure 10 shows that, the layer parameters of Models 1, 7, 8, 21, and 24 lead to a 
less RMS. 

Fig. 10 : Effect of changing Architecture on RMS 

5. CONCLUSION 

A reliable classification methodology to distinguish between normal and abnormal 
ECG signals, based on neural network architecture, is presented in this study. The 
features that were used for the classification task reduce the size of the neural 
network classifier with acceptable discrimination ability for possible real—time ECG 
diagnosis. The architecture of the designed cardiovascular neural network is 
changed to improve its performance, it was noticed that the total performance 
(Accuracy, RMS, Convergence time) of the network is better when using :- 
1-Fifteen linear predictive coding (LPC) coefficients to represent the number of 

processing elements in the input layer. 
2-The number of hidden layers is equal to one hidden layer. 
3-The number of processing elements in the hidden layer is equal to 7 PEs. 
4-The layer parameters, Delta Rule as a learning rule, Sigmoid as a transfer function, 

Weighted sum as a summation function, Gaussian as a noise function, and 
Quadratic or Cubic as an error function. 

For the future work, There is still an extra work that can be done in the developed 
system, by acquiring more extra ordinary examples from patients, train the network 
over it to increase its performance, and adding new cases to the system to increase 
its capability. 
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