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ABSTRACT 

Radar electronic support measures (ESM) system are responsible of threat detection 
and area surveillance to determine the identity and bearing of the surrounding active 
emitters. The high arrival rate of radar pulses in dense emitter environments 
demands fast automatic processing of arriving pulses so that the ESM system can 
fulfill its functions properly in real time. Yet, the performance analysis of automatic 
ESM system is usually encountered with the difficulty that both pulse arrivals and 
widths can be specified only probabilistically [1,2,3]. The success of Queueing theory 
[4,5] in many applications such as computer communication networks and flow-
control has encouraged designers to utilize queueing theory in qualifying and judging 
the performance of automatic ESM systems in dense emitter environments. The 
queueing behavior of these systems is analytically evaluated in this paper under 
different service disciplines and the results are validated by elaborating computer 
simulations. The analysis involves statistical modeling of arrival and departure 
processes as well as distribution of service times. It permits estimating the blocking 
probability due to high arrival rates of intercepted radar pulses or due to limited 
speed of the deinterleaver processor. The analysis also indicates some system 
configuration trade-offs. 
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1 INTRODUCTION 

Early radar electronic support measures (ESM) systems relied on human operator 
interpretation of ESM receiver output to provide classification and identification of 
intercepted emitters. The steadily increasing density of radar pulse environments 
leads to the requirement of some form of automatic ESM processing to cope with 

system can be divided into two main subsystems:(1) the receiver-encoder 
subsystem, that measures the parameters of each received radar pulse and encodes 
them by a digital word called pulse descriptor vector (PDV), and (2) the deinterleaver 
processor, that rapidly sorts the PDVs into chains each comprising a group of PDVs 
supposed to be emitted from the same radar. This paper analyzes the queueing 
behavior of automatic ESM systems in dense emitter environments. 
Queueing theory is concerned with the abstract mathematical modeling of systems 
subject to demands whose occurrences and lengths can, in general, be specified 
only probabilistically. Although, these systems are usually very complex, it is often 
possible to abstract from the system description a mathematical model whose 
analysis yields useful information about the quality of the service and the efficient 
utilization of the system. In this paper, reception of radar pulses, and extraction of 
their parameters as well as sorting of PDVs into separate chains is modeled as a 
finite-state machine operating as a queue with a single server. It is known that the 
application of the queueing theory is possible in principle if both the arrival process at 
the queueing model input and the service time distribution inside it are statistically 
characterized. All queueing models discussed in this paper are conventionally 
labeled as [4,5]: 

Distribution of 
interarrival times 

Distribution 
of service 

Number of 
servers 

Maximum number of 
customers allowed to wait 

2 THE QUEUEING MODEL REPRESENTATION OF ESM RECEIVER-ENCODER 
SUBSYSTEM 

Distribution of interarrival times: 

In dense emitter environment, the interarrival time between successive pulses at the 
ESM receiver input is a random variable distributed according to a negative 
exponential distribution with parameter X equal to the sum of the PRFs of all active 
radars in the instantaneous view of ESM receiver[6]. Since for negative exponential 
distribution 1/A, is the mean value (of interarrival time), then k is also the average 
arrival rate of radar pulses. As the number and PRF diversity of active pulse emitters 
increase the arrival process at the input of ESM receiver tends to be a stationary 
Poisson process. That is given a time interval t, the probability that exactly n pulses 
arrive at the ESM receiver input during T is 

A  

Po (v) = e — 	! 	
(1) 
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The average arrival rate was measured through computer simulations of different 
number of active emitters with different PRFs. Both the calculated arrival rate A, and 
the measured one A. -measured are provided in Table 1.Clearly, the arrival rate of radai-
pulses at the ESM receiver input is directly proportional to the number of active 
radars illuminating the ESM receiver, and equals to the sum of PRFs of these radars. 
The values of the interarrival time between successive received radar pulses were 
observed over a long interval. The moments of the interarrival time up to the fourth 
order were computed and denoted as M; 	4. The first four moments M, ; 1 i 

4 of the negative exponential distribution with parameter X taken to be the sum of 
PRFs of simulated active radars were calculated. We defined a normalized squared 
distance D2  between the theoretical and the measured densities of the interarrival 
time as 

Mtr — MU, 
2 

11 Mt , 2 

D2  = 
M  2t 	Man M2t (2) 
M3r /113m M31 

Mar 	M len Ma, 

where, IIxII denotes the norm of the vector x. The results are presented in Table 2 for 
different simulated arrival rates of radar pulses emitted from the active radars in the 
instantaneous view of ESM receiver. From Table 2, it is clear how close the 
measured distribution is to the theoretical one. For the data in Table 2, 0.26 x 
D2  5.54x 10'. 
The third property, we verify, is that the number of received pulses at the ESM 
receiver input during any observation time is a randomly distributed according to 
Poisson distribution with parameter A,. Thus, we simulate an instantaneous field of 
view with X = 30000 pulse/sec. and observation time = 0.21 sec. Then, we divide this 
observation time into a number of sub-intervals L. We count the number of pulses n 
occurring in each sub-interval. We evaluate the probability of every counted n. 
Finally, we calculate the corresponding probabilities from Poisson distribution and 
compare these probabilities with the measured ones. We repeat the above procedure 
for different lengths of the sub intervals as shown in Table 3. 

Distribution of service times: 

The distribution of service time inside the ESM receiver depends on what pulse 
parameters are measured and on the service discipline of the receiver-encoder 
subsystem[1,2]. Generally, there are two service disciplines of an ESM receiver-
encoder [1,2], namely the paralayzable counter with constant dead-time and the non-
paralayzable counter. Both service disciplines do not allow waiting. Under the 
paralayzable service discipline, an ESM receiver-encoder [1,2] can only process 
pulse which arrives after fixed time 	from the previous received pulse. The 
corresponding queueing model is the M/D/1/0 moder [4,4, Typical values of fixed 
service time are the mean and the maximum widths of arriving pulses. Under the 
non-paralayzable counter service discipline an ESM receiver-encoder is ready to 
process a new coming pulse as soon as the previous pulse is expired. Thus the 
service time for each received pulse is equal to its width. 

(') The M/D/I/k model assumes that all service times have actually equal fixed values (deterministic values) and 
that we have a Poisson input process with fixed mean arrival rate, only one server and maximum number of 
customers allowed to wait is k. 
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For overlapping pulses the service time is the maximum of the resultant width of 
overlapped pulses and certain maximum permissible value [7]. This avoids 
overloading by a CW signal. 
The distribution of the service time under paralayzable counter service discipline is 
given by 6(t-T) and under the non-paralayzable counter discipline is given by the 
actual distribution of the widths of arriving radar pulses. A good statistical model of 
the service time is the Erlang distribution with parameters 0 and IA [4,5], 

f (I) = (011) 6)  
of  

Elf) = 
1 

 

0_ _ E  {12 _ E 2 { i } 

VVV 	

1  

01=  

Notice that for 0 =1, the Erlang distribution reduces to the exponential distribution. 
This would be the distribution of the service time under the non-paralayzable service 
discipline when the main contributors to the arrival process at the input of ESM 
system are short pulse radars, (like range finders or tracking radars). For 0 >1, the 
mode of Erlang distribution shifts rightward from zero and the coefficient of variation 
0/E{t} decreases. This might approximate the distribution of the service time under 
the non-paralayzable counter service discipline in dense environment of surveillance 
radars with low diversity of pulse widths. Ideally, the distribution of widths of arriving 
pulses should be a multimodal distribution with the number of modes corresponding 
to the number of active pulse radar emitters. But assuming low diversity of widths 
and considering multi-path and narrowband filtering effects the actual distribution 
might be a unimodal distribution. Finally, as 0 ----> co, the Erlang distribution tends to 
the deterministic one 6(t-1/14. Thus the queueing model of an ESM receiver t.. der 
non-paralayzable counter service discipline is M/G/1/0(1), [4,5]. 

3 EVALUATION OF THE FREE STATE PROBABILITY Pf(t) 

Under either service disciplines the ESM receiver-encoder is usually in one of the 
following two states: 
1-Free state, where the ESM receiver-encoder is free and ready to receive any new 

coming pulse. The probability that the ESM receiver is free is denoted by Pf(t). 
2-Busy state, where the system is busy processing a pulse and cannot receive and 

process another pulse. So, in this state the new coming pulse will be lost. The 
probability that the receiver is busy is denoted by Pb(t). 

Since the system must be in one of the above states, it is evident that 
Pb(t) = 1 	 (7) 

The ESM receiver-encoder will be in the free state at time instant t + At if either of 
the events e, or e2  happens: 

" The MI GI 1/ 0 assumed that the queueing system has a single server, maximum number of customers 
allowed to wait is zero and a Poisson input process (exponential interarrival times). The customers are 
assumed to have independent service times but with the same (general ) probability distribution.. 

1 

(3)  

(4)  

(5)  

(6)  

it,r0 
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PI (t) =(1 + 

e " 	 w ,„,„ 
P f  ( t ) — 

2  (w max — w min) 

(13a) 

(13 b) 

(13 c) 

(13 d) 

PI (t) = e-ar  

1 
PI (t) — 

1 + 2w 

A
—
w
j-  

Case 1: 

Case 2: 

Case 3: 

Case 4: 
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e1 :The ESM receiver-encoder is free at the instant t and no pulse arrives during the 
interval At. 
e2:The ESM receiver-encoder is busy at time instant t, processing of current radar 
pulse terminates during the subsequent interval At and no new pulse arrives. 
From (1) we have 

P„_0(4t)= e-an. (8) 

P(e = P f 	161  P f (t)(1 — AAt) 	 (9) 

In [7], it is shown that the probability P(e2) can be expressed in the form of [LAt, no 
matter the service discipline adopted and the distribution of the service time. Table 4 
provides expressions for IA in four different cases. From the above presentation, we 
can express Pf(t + At) as 

Pf  (t + At) = P (1)(1 — AAt) + pAt 	 (10) 

which reduces to a first order differential equation 
Pf(t) + AP f (t) = p 	 (11) 

The steady state solution of the above equation is 
Pf  (t) ,u/A 	 (12) 

Substituting from Table 1 into (10) we get 

Fig. 1 compares the ratios of successfully processed pulses under paralayzable 
service discipline (case e) and the same ratio under non-paralayzable service 
discipline cases (a, b, c, d). Note that M/ 	1/ 0 = M/ D/ 1/ 0 with ti = 141. It is 
assumed that successfully processed pulses are only these completely received . 
Fig. 1 indicates that for a given arrival rate, as the parameter 0 of the Erlang 
distribution increases, the ratio of successfully processed pulses under non-
paralayzable service discipline decreases. But, for all finite 0 it remains higher than 
the same ratio under paralayzable service discipline. Yet in practice, there can exist 
dense emitter environments providing pulse arrival rates much higher than those 
presented in Fig. 1. Clearly, at such very high arrival rates the ratio of successfully 
processed pulses will be extremely low. Possible cures are either to equip the ESM 
system with several receiving-encoding channels, (multiple servers), or to limit the 
measurements of mono pulse parameters to those that can be obtained from the 
pulse leading edge and imposing the paralayzable service discipline. In this case the 
fixed service time is of order 0.111 sec. or even 0.05 .t sec. From (13-a), the ESM 
receiver -encoder will be able to process up to 106  pulse/sec. with success ratio 90%. 
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4 THE ESM REbEIVER-ENCODER DEPARTURE PROCESS 

Under the paralayzable counter service discipline, the departure process is a renewal 
process since the pulses of the input flow which are blocked are not randomly 
selected. The departure process has therefore a residual effect and is not a Poisson 
process. The distribution of the interdeparture times between successive processed 
pulses f„(I) is deduced from the interarrival times of the input flow of pulses as 
follows 

{the proportion of the distribution of the interarrival times in the range(/, 1 + Al)) 
j,,(/)A/ = 	  {the proportion of the distribution of the interarrival times in excess of r} 

A,e-2A1A/ 
	 , / = r 	 (14) 

f7 ,(1) = 2 cxp(— 2(1-- r)); 1 > r 	 (15) 

where, Td  is the interdeparture time between output PDVs from the receiver-encoder 
subsystem and T is the fixed service time of the receiver. We evaluated the squared 
distance between the theoretical and the measured densities of the interdeparture 
times, according to (2). The results are given in Table 5 for different simulated arrival 
rates . For data in Table 5, 0.29 x10-4  D2.5_ 6.57x10-4  
Now we are going to show that under non-paralayzable counter service discipline if 
the arrival process is a Poisson process, then so is the departure process. Yet it is 
necessary that the PW of intercepted pulses be exponentially distributed or follow an 
Erlang distribution with moderate 0 
Suppose that n pulses arrive at the input of the ESM receiver during L seconds and 
only d of them are successfully processed by the ESM receiver-encoder subsystem 
and passed to the deinterleaver processor in the form of d PDVs. Thus, n-d pulses 
aren't processed or are missed. As indicated in the previous section each arriving 
pulse will with probability Pt  find the ESM receiver in free state and with probability Pb 

in busy state. Hence, the number d of pulses successfully processed out of n pulses 
arriving during the interval L follows the binomial distribution, 

( 
Pdi „( L) = 	Pd  Pi n

'  , 
	d 	 (16) 

\_(/)  

where Pd,,,(L) is the probability that d PDVs will emerge from the ESM receiver-
encoder subsystem given that n pulses are received at its input during time L. 
Let us recall that in dense environments the number of pulses arriving at the ESM 
receiver input is a random variable distributed according to Poisson distribution with 
parameter X. So, an expression for Pd(L) which is the probability that d PDVs will 
emerge from the receiver-encoder in L seconds regardless of the number of arriving 
pulses, we use the law of total probability ; i .e. 

cc 
p,,(0.y,p,„„(L)p„(0, 

„:„1 

.(riN 
P' 	1)(1) 	 (17) 

n _d  

Substitution of 1) into (17) gives 
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(A0L)d  
Pd (L)- 	e At)/  , d 0 

d! 
where, 

2L0  = P, 	 (19) 
From (18) it is clear that under the assumptions indicated above the departure 
process will be a Poisson process with departure rate A0  = A P, . Consequently, the 
distribution of the times between successive output PDVs from the receiver-encoder 
subsystem is a negative exponential distribution with parameter A0  = A P,. 
Computer simulations verified these conclusions and the results are presented in 
Table 6, where 0.017 x10-4  .1212  11x10-4  0.017. 
If the assumption made on the distribution of widths of arriving pulses is absent, i.e. if 
for example 0 < Wmin PW < wmax , then the values of d in (16) - (18) should be 
restricted to the following ranges: 
- in (16), [L/wmax] < d 	min { [L/wm,„], 
- in (17) [L/wmad 5 d [L/wmd, 
where, [x] denotes the integral part of x. Obviously in this case the departure process 
is no longer a Poisson process since (18) is not valid for all d, L 	0. 

5 THE DEINTERLEAVER REPRESENTATION AS A QUEUEING MODEL 

The deinterleaver is modeled as a single server receiving a random stream of PDVs 
from the receiver-encoder subsystem. The service-time in the deinterleaver is the 
time needed to decide for a new arriving PDV which of the already formed chains, it 
should be attached to. Hence, its probability density function b(t) is given by 

b(i) = P(1)4 - t,„„,p ) P(2)6s{t -2 .c„,/,)+ 	+[P(N)+I 	 t 7  N.t„„,p ) 	(20) 
where, tromp  is the time needed of comparing a new PDV with one radar chain, N is 
the number of chains formed inside the deinterleaver, P(i), 1 i N, is the probability 
that the incoming PDV matches the it"  radar chain, and P„,„, is the probability that the 
incoming PDV doesn't match any radar chain. If new = 0 , i. e. if N is the total 
number of active emitters within the instantaneous view of the ESM receiver, then it 
can be shown that 

PRF,
NP(i) - 	, 1 5 i N, 	 (21) 

PRF 

The distributions of the service time inside the deinterleaver and of the interarrival 
times between received PDVs at the deinterleaver input are necessary to describe 
the queueing behavior of the deinterleaver. With the ESM receiver-encoder under the 
paralayzable counter service discipline, the deinterleaver queueing model will be the 
f,-,/b/1/0 [4,5], where fTd  is given by (15) and the density b(t) is given by (20). But with 
the ESM receiver-encoder under the non-paralayzable counter service discipline and 
assuming exponentially distributed widths of intercepted pulses, the deinterleaver 
queueing model will be M/b/1/0 [4,5]. The analysis of the queueing behavior of the 
deinterleaver in latter case is simpler than in the former one. It allows to estimate the 
blocking (congestion) probability of the deinterleaver, i.e. the probability that a PDV 
arrives at the deinterleaver when it is busy processing another one. 
It is important to note that the performance of the deinterleaver in terms of the 
blocking probability is much improved when it is preceded by a pre-buffer of size K. 
The function of this pre-buffer is to store up to K of the arriving PDVs when the 
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deinterleaver processor is busy. However, if a new PDV arrives while the 
deinterleaver pre-buffer is full, this PDV will be lost. The queueing model in this case 
is M/b/1/K. 
Suppose that the deinterleaver is preceded by a pre-buffer of size K. The instant at 
which the deinterleaver completes servicing the nth  PDV is the instant when the 
deinterleaver is ready to service the (n+1)rst  PDV. Let us designate such instant by t„, 
n = 1,2,3 	and the corresponding state of the pre-buffer by the positive integer k, 
where k is the number of PDVs left in the pre-buffer after the last processed PDV. 
Now we denote the probability that the pre-buffer is at instant t, in state k by 7z-k  (t„), 0 

k 5 K. Assur'ne that the input flow of PDVs is a Poisson process with average rate 
X. The probability that j PDVs arrive at the pre-buffer input during the service time 
of PDV number n is 

RI) /  
j) 	p(c„ 	= 	 b(i)dt 	(22) 

0 

where, C, is a random variable denoting the number of PDVs arriving at the pre-
buffer input while servicing the PDV number n and b(t) is given by (20) . The 
probabilities I-, are transition probabilities associated with occurrence of different pre- 
buffer states during servicing successive PDVs. It can easily be deduced that 

„) = 	71 	„ 1 ) 	, 	= 0 , 1, 2 	 (23) 
-0 

As n 	co, the system composed of the pre-buffer and the deinterleaver reaches a 
steady state and the pre-buffer state probabilities 	k 	K become time 
independent. In particular, the steady state blocking probability will be given by the 
limit of rck(t,) as n-->c,. Moreover, the system (23) will take the form 

= 0  , J =0, 1, 2 	 (24) 
o 

where, (5., equals 1 if i = 1 and equals zero for i 	The above system can be 

efficiently solved for n,, TE2, no 	TiK  in terms of 'as, the forward substitution 
K 

algorithm [8]. By imposing the constraint Z7r, = we can determine the value of no  
,=o 

and hence the values of the other state probabilities 71,, 1 i < K. 
Evidently, the number of bits used to generate the PDV will determine the value of 
the comparison time inside the deinterleaver. Thus, the longer the length of the PDV, 
the higher the blocking probability of the deinterleaver processor. So, if we desire to 
decrease the comparison time, the number of bits used to represent the PDV should 
be decreased, but this degrades the resolution and accuracy of measuring the 
parameters of the intercepted pulses. To maintain good measurement performance 
of each parameter without increasing the blocking probability of the deinterleaver we 
have two alternate solutions. The first one is to increase the pre-buffer size and the 
second is to choose a faster processor to decrease the comparison time. Figs.2 and 
3 show quantitatively the effect of the speed of the deinterleaver processor and the 
size of the pre-buffer on the blocking probability of the deinterleaver at different 
arrival rates of PDVs. Fig. 2 shows that for a fixed pre- buffer size and fixed average 
arrival rate of PDVs, the higher the speed of the deinterleaver processor, the lower 
the blocking probability. Also, the blocking probability is much reduced by increasing 
the size of the pre-buffer, for fixed of the processor speed as shown in Fig. 3.In 
particular, for the simulated emitter environment, when the deinterleaver's single 
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comparison time with one radar chain is 35 IA sec and the pre-buffer size is 5 PDVs, 
then for arrival rates 	2000 PDVs/sec the blocking probability is 50%, (Fig. 2). 
Now, if the pre-buffer size is increased from zero to 80 PDVs, the deinterleaver can 
process up to 23400 PDVs/sec with blocking probability < 50% , (Fig. 3). 
Alternatively, if the single comparison time is decreased from 35 p sec to 25 p sec , 
by increasing the processor speed ), the deinterleaver with pre-buffer size 5 PDVs 
can process up to 24000 PDVs/sec with blocking probability 50 %, (Fig. 2). Thus in 
our case, 40% increase of processor speed is roughly equivalent to 16 times 
increase of the pre-buffer size if the blocking probability is the measure of 
comparison. Although, fast processors are expensive they ensure high average 
services rates, minimal reporting latency of intercepted threats and are usually 
associated with less hardware (no need for large buffers). The 	 single 
comparison time can also be decreased by optimizing the sorting algorithms and in 
some applications, by limiting the measurement of mono-pulse parameters in the 
ESM receiver-encoder only to those obtained from the pulse leading edge, (short 
PDVs). 

6 CONCLUSION 

In this paper, there has been analyzed the queueing behavior of an automatic ESM 
system in dense emitter environment. It has been concluded that an automatic ESM 
system can be generally represented as a cascade of two queueing models. The first 
queueing model describes the operation the ESM receiver-encoder subsystem and 
the second describes the operation of the deinterleaver processor. It is shown that 
the ESM receiver-encoder subsystem operates under either paralayzable or non-
paralayzable service discipline. Analytic expressions for the ratio of successfully 
processed pulses have been derived under both service disciplines. The results show 
that for the same input arrival rate of radar pulses, the ratio of successfully processed 
pulses under non-paralayzable service discipline is higher than the same ratio under 
paralayzable service discipline. The departure process of PDVs from the receiver-
encoder subsystem has been analyzed for both service disciplines. It has been 
shown that the behavior of the deinterleaver is extremely improved when it is 
preceded by a pre-buffer. An analytic procedure has been defined for evaluation of 
the steady state blocking probability of the deinterleaver. The analysis of the 
queueing models describes the operation of automatic ESM system enables us to 
evaluate the probability of pulse loss due to: time overlapping, limited processing 
speed of the deinterleaver or insufficient storage capacity of the pre-puffer. 
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Figure & Table Captions 

-Fig.1:Comparison of ratios of successfully processed pulses under paralayzable 
and non-paralayzable counter service disciplines, PW is distributed according to 
Erlang distributio'n with w =1/ p. =12 p. sec and for different 0: (a) 0 =-1, (b) 0 =2, (c ) 
0 =5, (d) 0 =8, (e) 0 = CO (paralayzable). 
-Fig. 2: Dependence of the deinterleaver blocking probability on the arrival rate of 
PDVs, constant pre-buffer size = 5 PDVs, comparison time with one radar chain: (a) 
45 1.1 sec, (b) 35 la sec, (c) 25 ji sec, (d) 15 p sec . N is the total number of active 
emitters within the instantaneous view. 
-Fig. 3: Dependence of the deinterleaver blocking probability on the arrival rate of 
PDVs, constant comparison time with one radar chain =35 p. sec,: (a) pre-buffer size 
= 0 PDV, (b) pre-buffer size =20 PDVs, (c) pre-buffer size =40 PDVs, (d) pre-buffer 
size =80 PDVs. N is the total number of active emitters within the instantaneous view. 

-Table 1: The relation between the arrival rate of radar pulses at the ESM receiver 
input and the sum of PRFs of radars illuminating the ESM receiver. 
-Table 2: The square distance between the theoretical negative exponential 
distribution and the measured distribution of interarrival times between received 
radar pulses at different arrival rates. 
-Table 3 : Comparison between the distribution of the number of received pulses 
during different time intervals and Poisson distribution with parameter X =30000 
pulse/sec: N 	number of subintervals, L = width of subinterval, 

Pat (L ) 	e - A  ( 2 L 	 pne  (L ) estimated probability. 

-Table 4 : Expressions for p in four different cases. 
-Table 5: The normalized squared distance between the theoretical delayed 
negative exponential distribution with parameters X and T and the measured 
distribution of interdeparture times between output PDVs at different arrival rates 
[constant service time, 'C = 11 VI sec.]. 
-Table 6:The normalized square distance between the theoretical negative 
exponential distribution with parameter X.0  and measured distribution of the 
interdeparture times between output PDVs at different arrival rates 	[non- 
paralayzable counter service discipline, average PW = 10 p sec]. 

Interpulse Interval Distribution in The Environment 
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Table 1 

A , i P/?Fi  [Pulse/sec.] 
X.measured 
[Pulse/sec.] 

Number of 
active radars 

31500 31485 7 

34000  33951 3 8 

35500  35441 3 9 

38750  38687 3 10 

42500  42439 4 11 

47750   47681 4 12 

49500   49388 4 13 

52250   52188 5 14 

56500  56362 5 15 

-58750   58621 16 

60000  59857 5 17 

61000   60867 6 18 

63000  62860 6 19 
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Xmeasured 
[P/sec.] 

Mlm 
x105  

M11 
x105  

M2m 
x109  

Ma 
x109  

M3m 
x1013  

M3t 
x1013  

Mom 
x1017  

Mgr 
x1017  

D2  
x106  

31485 3.17 3.17 2.09 2.05 2.10 1.90 2.80 2.40 2.20 
33951 2.90 2.90 1.90 1.70 1.90 1.70 2.60 1.70 2.06 
35441 2.80 2.80 1.86 1.50 1.89 1.34 2.50 1.50 0.39 
38687 2.50 2.50 1.50 1.33 1.50 1.03 1.30 1.00 0.26 
42439 2.30 2.30 1.30 1.01 1.16 0.78. 1.40 0.73 2.05 
47681 2.09 2.09 1.07 0.87 0.83 0.55 0.99 0.46 2.00 
49388 2.02 2.02 0.98 0.82 0.81 0.45 0.95 0.39 3.30 
52138 1.95 1.95 0.43 0.73 0.79 0.42 0.90 0.32 1.65 
56362 1.77 1.76 0.82 0.63 0.66 0.33 0.81 0.23 5.90 
58621 1.70 1.75 0.78 0.57 0.63 0.29 0.78 0.20 4.70 
59857 1.67 1.66 0.76 0.55 0.63 0.27 0.76 0.18 2.89 
60867 1.64 1.63 0.75 0.53 0.61 0.26 0.75 0.17 4.70 
62860 1.59 1.58 0.72 0.51 0.60 0.23 0.72 0.15 4.30 
67590 1.47 1.47 0.62 0.43 0.51 0.19 0.65 0.11 5.54 

Table 3 
N =2100, L=100 p. sec. 
n PITT (L) Pile(L) 

0 0.049 0.046 
1 0.149 0.160 
2 0.224 0.229 
3 0.224 0.242 
4 0.168 0.170 
5 0.101 0.120 
6 0.050 0.045 

N =1050, L = 200 p. sec. 
n P n  i  (L) Pne(L) 

2 0.045 0.049 
3 0.089 0.098 
4 0.134 0.150 
5 0.161 0.173 
6 0.161 0.155 
7 0.138 0.150 
8 0.103 0.114 
9 0.068 0.075 
10 0.041 0.035 

N =700, L=300 p. sec. 
n Prif  (L) Pne(L) 

4 0.034 0.039 
5 0.061 0.067 
6 0.091 0.101 
7 0.117 0.130 
8 0.132 0.145 
9 0.132 0.140 
11 0.097 0.106 
12 0.072 0.080 
13 0.050 0.056 

Most likely values occur at n 
Table 4 

Service 
discipline 

Service time 
Distribution 

Queuein 
g Model 

p, 

Case 1 Paralayzable Fixed value T 	 , M/D/1 /0 A CAr 

Case 2 Non- 
paralayzable 

Exponential with 
mean value = w")  

M/M/1/0 A 
1 + A, w 

Case 3 Non- 
paralayzable 

Erlang 	with 	parameter 	0 
and mean w (1) 

M/E0/1/0 Al ° 
(1 2+ - 0 

Case 4 Non- 
paralayzable 

Uniform in 
L  - min , Wmad(2)  fw 

M/G/1 /0 e '''''-'. - e - Aw- 
(W.., - W.. ) 

(1)    w is mean width of arriving pulses. 
(2)  

\Valle and wmax are maximum and minimum widths of arriving pulses respectively. 
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Table 5 

Xmeasured 
[P/sec.] 

Mlm 
x105  

Mit 
x105  

M2m 
x109  

M2t 
x109  

M3m 
x 1013  

Mgt 
X1013  

M4m 
X1017  

Mot 
x1017  

2  D 
X104  

31485  4.30 4.27 2.50 2.25 2.73 2.70 3.49 3.44 0.49 

33951  4.03 4.04 2.36 2.15 2.02 2.21 2.68 2.60 0.66 

35441  3.88 3.90 2.33 2.13 2.10 1.90 2.58 2.40 1.09 

38687  3.70  3.68 2.24 2.02 1.74 1.50 1.75 1.60 0.29 

42439  3.46 3.45 2.06 1.74 1.52 1.24 1.27 1.17 0.84 

47681  3.25 3.19 1.78 1.46 1.27 0.93 1.19 0.78 0.48 

49388  3.20 3.12 1.72 1.38 1.29 0.85 1.08 0.69 6.57 

52138  3.05 3.01 1.71 1.27 0.92 0.79 1.04 0.57 1.12 

56362  2.90 2.85 1.56 1.19 0.85 0.62 1.01 0.44 3.07 

58621  2.84 2.80 1.02 1.07 0.80 0.61 0.97 0.38 2.04 

59857  2.90 2.77 1.38 1.04 1.13 0.53 0.88 0.36 1.28 

62860 2.85 2.65 1.30 0.97 1.05 0.47 0.75 0.31 3.50 

Table 6 

Xmeasured 
[P/sec ] 

Mtm 
x105  

Mit 
x 105  

M2m 
x109  

Met 
x109  

M3m 
x1013  

Mgt 	' 

X1013  
Mom 
x1017  

Mot 
X1017  

D2  
x104  

31485  4.07 4.17 2.50 3.40 2.55 4.33 3.31 7.20 5.90 

33951  4.01 3.90 2.55 3.11 2.50 3.68 3.20 5.80 3.16 

35441  4.02 3.80 2.50 2.90 2.50 3.30. 3.20 5.10 2.40 

38687  3.60 3.50 2.10 2.50 1.90 2.70 2.40 3.90 0.74 

42439  3.30 3.33 1.79 2.25 1.50 2.26 1.50 3.17 0.05 

47681  3.05 3.09 1.45 1.91 1.14 1.71 1.30 2.20 5.80 

49388  2.99 3.02 1.39 1.83 1.09 1.66 1.20 2.17 0.93 

52138  2.88 2.95 1.30 1.70 1.05 1.49 1.20 1.70 11.00 

56362  2.69 2.70 1.18 1.50 0.93 1.28 1.10 1.40 8.00 

58621  2.65  2.70 1.14 1.46 0.90 1.18 1.10 1.20 9.00 

59857  2.63 2.67 1.20 1.42 0.90 1.14 0.95 1.10 0.31 

60867  2.62 2.64 1.16 1.39 0.90 1.10 • 0.92 1.10 0.02 

62860  2.60 2.59 1.14 1.34 0.90 1.04 1.00 1.08 0.82 

67590 2.45  2.47 1.02 1.22 0.82 0.91 0.95 0.90 0.65 
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