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Abstract 
A distinguishing feature of aerospace applications is the large envelope of operation in which the 
process is usually highly nonlinear and has different characteristics from one operating condition to 
another. Therefore, the objective of the present work is to design an autopilot that can cope with 
modeling errors, plant parameters variations, external disturbances and unmodeled dynamics, besides 
providing good performance and high stability. To achieve this objective, an adequate nonlinear 
mathematical model representing the dynamical behavior of the missile was derived (previous work) 
from which the linearized model for the underlying missile is obtained. A robust flight control system or 
autopilot is designed, for precise tracking, using (1) classical control design technique (previous work) and (2) 
Mixed sensitivity IL control design technique, the contribution of this paper. The paper presents, briefly, 
different issues in robust control highlighting the robustness to different sources of uncertainty for the purpose of 
achieving good tracking and disturbance rejection, and preserving the system internal stability. Then it 
summarized some of the controller design techniques including classical and advanced methods such as mixed 
sensitivity H n . Then, the structure of the underlying missile control system with the performance requirements 
imposed on it is developed. Finally, the design trials and analysis of the flight control system are carried out using 
the above techniques with the objective to satisfy the performance requirements including good tracking and 
disturbance rejection in presence of =nodded dynamics. The H 	has good robustness compared to 
the classical. However, the 1-1,0  controller has higher order. Therefore, this technique needs to be investigated 
more with the system, giving more attention to the weight selection and its order, the crucial point in its design. 

Keywords: Guidance and Control, Robust Control, Optimal Control, Polynomial Techniques 

1 Robust Control and Uncertainty within Missiles 
The objective of a control system is to alter the dynamical behavior of physical process so that 

the response from the controlled system, more nearly, satisfies the user's requirement. Any linear 
control law can only provide the required closed loop response at the expense of permitting the 
occurrence of some unsatisfactory features in the response to disturbance. This disturbance can be 
extraneous to the missile, such as atmospheric turbulence, or introduced by the flight control system 
itself through sensor noise. If the linear control system is designed for reducing the effect of unwanted 
inputs, the desired dynamic performance of the closed loop system to command inputs is unavoidably 
impaired. Even if some compromise can be achieved, such a solution can only be used within a most 
restricted region of the missile's flight envelope. Consequently, when a missile is required to fly on 
some particular mission, through the extreme. regions of flight envelope, one of the following two ways 
must be pursued. First, the nonlinear system is linearized around different operating points, then for 
every operating point a controller is designed. All the controllers are then brought into operation 
successively as the system passes through conditions where the corresponding models are 
approximately valid. That is, a gain schedule is designed such that the missile can be controlled over 
the entire flight envelope. Second, a nominal operating point is chosen for which a robust controller is 
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to be designed. This controller must satisfy stability and performance robustness when it is applied to 
the process (missile) at different operating conditions within the limits of its robustness margin. 
Designing a robust controller can be achieved using either conventional control or modern control 
techniques. 

Conventional or classical control methods are being regarded as those appropriate to time—invariant, 
linear single—input-single—output (SISO) systems. The donventional controllers are designed to satisfy 
specified requirements for steady—state error, transient response, stability margins or closed loop pole 
locations. The essence of classical design was successive loop closure guided by a good deal of 
intuition and experience that assisted in selecting the control system structure. Optimal control is one 
particular branch of modern or advanced control, which provides the best possible performance from 
its class when it responds to some particular input. Linear optimal control is a special sort of optimal 
control, in which the plant to be controlled is assumed linear, and the controller is constrained to be a 
linear function. Linear controllers are achidved by working with quadratic performance indices. Such 
methods that achieve linear optimal control are termed Linear-Quadratic (LQ) methods. In addition, 
there is an approach called H. in which the performance index is specified such that the infinite norm 
of a certain transfer within the system is satisfied. 

A distinguishing feature of a guided missile is the very wide range of operation characterized by time 
varying nonlinear dynamics system. Therefore, mathematical modeling can never exactly describe this 
system, and consequently there are unmodeled dynamics, which considered sources of uncertainty in 
this system. Linearization and separation of missile equations of motion into two uncoupled sets, 
longitudinal and lateral equations of motion, represent errors in evaluating the mathematical model 
because they are based on some assumptions. There are parameters in the model, which are only 
known approximately or simply in error such as aerodynamic data from wind—tunnel tests. These 
model uncertainties represent the differences between the actual physical system, missile, and the 
mathematical model. There are other sources of uncertainty such as wind gusts, sensors measurement 
noises, and the implementation inaccuracy where the implemented controller may differ from the one 
obtained by solving the synthesis problem. In this case, one may include uncertainty to allow for 
controller implementation inaccuracy. Therefore, the controller, to be designed and implemented 
within the missile control system, should be insensitive to model uncertainties and able to suppress 
disturbances and noises over the whole envelope of operation, i.e. should be robust. 

In Robust control there are some issues such as: robustness, command tracking, disturbance rejection, 
measurement noise attenuation and internal stability that has to be taken into consideration during 
design. Robustness of the controller includes both stability robustness and performance robustness. The 
stability robustness is the ability to provide internal stability in spite of modeling errors due to high—
frequency unmodeled dynamics and plant parameter variations, while the performance robustness is 
the ability to guarantee acceptable performance even when the system is subjected to disturbances and 
measurement noises. In addition the designed controllers must satisfy the performance requirements 
imposed on disturbance rejection, such as how fast it will be rejected. The other issue is the command 
tracking which is considered one of the most fundamental problems in missile control. That is, the 
missile has to follow or track the reference or guidance command signal very accurately. 

2 Controller Design Techniques 
2.1 Classical Control Design 	 • . 4 
The controller determines the deviation of actual output from the desired one yielding a control signal, 
which tries to reduce this deviation to zero. The manner in which the automatic controller produces the 
control signal is called the control action. From the basic control actions that commonly used in 
industrial automatic controllers are: proportional, integral, proportional—plus—integral, proportional-
plus—derivative, and proportional—plus—integral—plus—derivative control actions. Understanding the 
basic characteristid of these control actions is necessary in order to select the most suitable one to the 
underlying application design. The control signal at the output of the controller is simply related to its 
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input by a proportional constant kp, integral constant K1, and the derivative term lc. This combination 
of the proportional, integral and derivative control actions has the advantages of each of the three 
individual control actions. The design problem involves the determination of values of real constants 
Kp , Kt) and K1, so that the performance of the system meets the design requirements. Determination of 
such values depends on a trade-off approach, using some rules of thumb as in the literature. There are 
many heuristic rules for tuning the P1D-controller, such as the transient response method and the 
ultimate- sensitivity method due to Ziegler and Nichols [2, 12]. All of these tuning rules can be used to 
obtain the starting guess for the unknown parameters. Then, fine-tuning is to be carried out for 
satisfying the different performance requirements. 

2.2 Advanced Control Techniques 
There are various advanced control techniques such as the linear quadratic gaussian (LQG), linear 
quadratic regulator (LQR), generalized LQG (GLQG), Hoo  and generalized H. ( GH.) [7, 8, 9, 10]. 

The GH . design philosophy is mechanized to the underlying system. For this theory or design 
approach, the GLQG is considered to be the base for its derivation [9]. In the GLQG controller, the 
plant-structure is considered in a more general form that contains colored input disturbance and 
measurement noise Fig. 1. 	 (t) 	Disturbance 	d(t) 

at) r(t) Plant 
Wp  

Cascade Controller 

Co  

---• 
Wd 

u(t) 

z(t) 

Fig. 1: Feedback Control System with input dist., Meas. noise and Ref. 

This general plant structure could be broken down easily to any special case that might exist in reality, 
so the GLQG controller can be applied to a wide range of industrial processes and gives optimal 
rejection of measurable load disturbances. The cost function used includes dynamic weighting element 
allowing integral action to be modified [7, 8]. In this system the high-frequency (HF) disturbances n (t) 
affect the observed system output, represented by the signal y (t). The different signals can be 
represented by the coprime polynomials [9, 12, 15, 16, 17] as follows: the plant Wp  =A -1B, input 

disturbance Wd  = Ad-'Ca , the measurement noise W. = 	, the reference Wr  = A r-1E „ and 

the controller C. = C C m  . The signals U400;40 are white gaussian signals with zero means 

and unity variances. 

2.2.1 GH,0  Controller 
The Ho. norm of a stable scalar transfer function f (s) is simply the peak value of its absolute 

, , d 
value If Gal as a function of frequency, that is Ilf (st =maxif(jrn) . The Hoo  is a design method 

which aims to press down the peak of the selected transfer function. Our objective is that the output (y) 
of the system Gp  will track the reference signal (r) by designing the controller G, which has„ as its 
input, the tracking error. This problem can be thought of as minimizing the H norm of the transfer 
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function from r to (r-y) under the constraint of internal stability to prevent undesirable performance. 
This transfer function is known as the sensitivity function and given by: 

S. = (I+ WpC.)-1  
Although the tracking error signal is assumed to be unknown, it has a limited frequency spectrum, 
because it is impossible to track signals of very high frequency reasonably well. On the other hand, 
since in general there are bandwidth limitations on the actuators and sensors and due to problem in 
implementing controllers with a large bandwidth, there will be a certain bandwidth for the system to 
track signals. The GHm  is a design technique that can be tailored to the underlying system based on 
the GLQG and overcome most of these problems. The parameters in quadratic cost index are to be 
selected such that the closed—loop system frequency response is shaped in a desired form leading to 
what is called loop shaping. That is, the stability problem may be regarded as one of shaping the • 
system loop transmission so that it avoids critical points in the s-plane. Therefore the loop shaping 
design in this section is based on GHm  robust stabilization. In addition, the controller C. guarantees 
the robustness of the stability property with maximum stability margin. To obtain good design of a 
particular system, the weighting functions Pc  and F, are to be selected properly, where P, costs the error 
signal e (t), while F, costs the control effort signal u (t). The cost function weights P, and F, provide the 
mechanism by which the sensitivity function S., the complementary sensitivity function T. and the 
control sensitivity function M. can be modified and shaped [2, 3, 4, 5]. The control law provides a 
guarantee of stability and good performance in presence of model uncertainties. The bound for model 
uncertainty provides one method of defining the form of dynamic weights in GH. cost—function. 
According to the type of weighting choice (PG  has high gain at low frequency while Fchas high gain at 
high frequency) the closed—loop designs will have good performance and disturbance rejection 
properties. 

The optimal control problem requires the definition of control law structure and cost function to be 
minimized. The control law is defined as follows: 

u(t) = 	ea t) 	 (2) 

where e„ is the tracking error defined as the difference between the reference signal r(t) and the 
measured actual output z(t). The cost function or performance index to be minimized has the following.  
form: 

JGH., 
	

11(kww11. 
sup 4)4,4,1 
sup P, Cy: +F0~~F0 +PA)~,F0 + 	 (3) 

W 	= 13, • e, (t)+ F, • u(t) 

where, Ill is a weighted signAl composed of the tracking error e, (t) and the control signal u(t) with the 

weight elements P, and F, as rational transfer functions and 04,4, is the spectral density of the weighted 

signal. The weighting elements Po  and F, are defined as follow: P, = Pcd 	 and and F, = 	. Where, 

Pod  and Foot  are strictly Schur polynomials with P„, (0) = Fed  (0) =1and Fm  might be giVen with delay 

[10]. The GHa  optimal controller, which is the solution to the control law, is given by the following 
theorem [9]: 

Theorem: The proof can be found in [9, 11, 12] 
The controller design can be simplified by neglecting the measurement noise in system structure 
i.e. C.= 0 . In addition, the external signal—filters (W„ Wd  ) are assumed to be asymptotically stable 
and the plant, the reference and the input disturbance denominator polynomials are assumed equal i.e. 
A = A, = Ad  . Thus, the GHn  optimal contfoller transfer function can be simplified and given by: 

(1) 
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C =F  

a 	1-12,4 
Which requires the solution of two spectral factorizations and two diophantine equations as follows: 
(1) Spectral factors (D„ Df): 

The strictly Schur spectral-factors Dc  and D1  which will be used in solving the diophantine equations 
are defined as follows: 
D:D, = (P,„ F,d  B — F„.P,d 	(P„,F,d  B — F,„ Pcd  

D;Df = E:Er  +C:Cd  

(2) The diophantine equations: 
The polynomials G and H are obtained from the minimal degree solution { F, G, H } with respect 
tof of the coupled diophantine equations; 
FAXP„d  + L2G = P,.DfF: 	 (7) 

F-13X.F,d  — L,H=FonDfF: 	 (8) 

where 	F: is strictly Schur [2-5,7,12,16,17] and satisfies the relation F:F:.  = F-F-*  and 

L = L,L 2 	B — F P., A . The polyncilnial L, is a schur one while L, is non-schur. 

2.2.2 Weighting Function Selection 
Before attempting a controller design, control and error weighting functions, which reflect the 
frequency and time domain requirements must be selected. A good feedback design for a particular 
system is obtained by selection of the frequency dependent weighting functions Pc  and Fc, where Pc  
costs the error signal e (t), while Fe  costs the control signal u (t). Frequency shaping of Pc  and F, allows 
e(t) and/or u(t) to be weighted more in particular frequency ranges. That is, at low frequency the 
system is required to be insensitive to disturbances, while at high frequency it is required to filter out 
unwanted signals, like measurement noise. It is clear that 1Sn 1 must have a small value at low 

frequency and 1T0 Imust have a small value at high frequency. It may be demonstrated that weighting e 
(t) and u (t) is equivalent to weighting S. and M0, respectively. 

Toward the objective of weight selection, there are some rules and guidelines from the experience and literature 
[2-5, 9]. A simple method of selecting the weighting function using parameters that specify the corner frequency, 
the gain and the integral action that might be included is to parameterize it in the following from: 

P
11(1 — flis) 	and 	

F = y, —132s) 
=  

0 °Lis) 	 , + a2s) 	
(9)  

Where, the scalars y, , [31  , a, , y, ,132  and a2  are the tuning parameters for adjusting the system 
performance. It is often desirable to introchice integral action to the controller to improve the low—
frequency performance of the control system including tracking and low frequency or steady-state 
disturbance rejection. 

3 Missile and Actuator Dynamics 
The missile modes can be divided into two categories: one includes modes that involve the rotational 
degrees of freedom and known as the short period, roll and Dutch—roll modes. The second category 
includes modes that involve ``the translational degrees of freedom which known as the phugoid and 
spiral modes. The responsiveness of a missile to maneuvering commands is determined by the speed of 
the rotational modes. The frequencies of these modes tend to be high. Therefore, it is necessary to 
design an autopilot system to control these modes, and to provide the missile with a particular type of 
response to the control inputs. One of the main channels constituting the autopilot system is the pitch 
channel, the general structure of which is shown in Fig. 2. 

(4) 

(5)  
(6)  
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It can be seen that there are four principle elements: the missile dynamics, the sensor dynamics, the 
actuator dynamics and the controller or autopilot. The missile dynamics are described by a set of 
nonlinear differential equations whose coefficients are time varying and stochastic. Therefore, to 
design and analyze the performance of an autopilot, a state space representation or transfer function 
representing these dynamics should be available. Toward this objective the set of equations was 
linearized, in a previous work [1], using the perturbation around trim conditions among the whole 
envelope of missile flight. Then, the Laplace transform is applied to the linearized equations yielding 
the following transfer functions: 

Gm  = G: = 

2.47998s +1.31762 for t = 2 [sec] 

for t = 30 [sec] 

for t = 60 [sec] 

(10) 

s3  + 0.573s2  + 0.0699s — 0.0211 
2.658s+ 0.53415 

s3  + 0.69055s2  +11.9562s — 0.02128 
2.495s + 0.2306 

s3 +1.11516S2  + 0.02s — 0.00092 

Fig 2: The general structure of Pitch channel 

The inertial measuring sensor act as transducers in the missile flight control systems, in that it measures 
the motion variables and produces output voltages or currents, which correspond to these motion 
variables. For simplicity, the gyro is taken as a constant gain value Gep  = 2.7 [volt / deg ree] . The 
actuator system was represented by three elements: a power amplifier, a servomotor and a feed back 
element. The actuator dynamics with loading is represented by the following transfer function [1]: 

= 	
92.4 

 
tP 	0.000075s2  + 0.0058s +1 	 (11)  

4 Pitch Channel Compensator 
The control system is designed to perform a specific task such that the performance specifications are 
satisfied. These specifications are generally related to transient and frequency response such as 
overshoot, speed of response, phase margin and gain margin. Some performance specifications 
concerning the aerospace applications and have to be satisfied by the autopilot are summarized as 
follows [1,5]: rise time 5 0.5 [sec], maximum peak overshoot 5 5% and reject 50% of the 
disturbance within 1.5 [sec] and 95% within 4 [sec]. Toward this objective, the classical design 
technique using PI/PD/PID was designed in a previous work [1] and will be compared with advanced 
control techniques ( GHm ) in the next subsections. 

4.1 Classical Design 
A classical control had been designed in a previous work [1] for the pitch channel as follows: 

0.01291+0.225s) 
G — 

eP 	± 0.0086s + 0.00044660 
Then, the transient and frequency responses for the obtained compensated system are shown in Fig. 3, 
using the MATLAB. Form these figures, it is clear that the design satisfied the system performance 

(12) 
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with overshoot (25%), rise time 0.35 [sec], settling time 1.5 [sec], phase margin 55.4 [deg], gain 
margin 10 [dB], bandwidth 4 [rad/sec] and corner frequency 7.3 [rad/sec]. 

Bode Diagrams Step Response 

Frequency (radisee) 
Fig 3: Classical system design (a) Bode diagram and (b) Step response 

4.2 GIL, Controller Design 
For the design and analysis trials using this philosophy, the operating point system dynamics at flight 
time tf  = 60[sec] is considered as the nominal operating condition. Then, the cost function weights are 
selected using different trials according to Eqs (9), yielding the transient and frequency responses as 
shown in Fig. 4 using the MATLAB. In one of the trials, the cost function weights are selected as 
follows: 

P = 	  

	

(100s + 0.32) 	and F -= (50s + 0.032) 	 (13) , 	 , 	 
(7000s +1) 	c 	(350s +1) 

Using these weights and the GK., programs [6] with the underlying system, the obtained controller is: 

0.10109 S6  + 7.9653 S5  + 1364.1496 S4  + 2823.7512 S3  + 261.2115 S2  + 1.42215 + 0.0019966 
Gcm  - 6  

S + 84.6543 S5 +13973.5241S
4 + 108321.6238 S3 +10213.2125 S2 + 29.7093S+ 0.0040361 
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Fig 4: GHm  controller design (a) Bode diagram and (b) Step response 
Form these figures, it is clear that the autopilot design satisfied the system performance with overshoot 
(18%), rise time 0.51[sec], settling time 0.95[sec], phase margin 53.3[deg], gain margin 33.23 [dB], 
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bandwidth 1.5[rad/sec] and corner frequency 3.1 [rad/sec]. For easy comparison, the previous results 
can be summarized in a tabulated form as follows: 

Overshoot 
[oh] 

Rise time 
[sec] 

Settling Time 
[sec] 

B.W. 
[rad/sec] 

Phase margin 
[deg] 

Gain margin 
[dB] 

Classic 25 0.35 1.5 4 55.4 10 
GH., 18 0.51 0.95 1.5 53.3 33.2 

From this table, it is clear that the GH., controller has a smaller overshoot, settles faster and has better 
stability margins than the classical controller. 

5 Robustness of the Designed Autopilot 
Both the controllers, the classical and the GH., are subjected to disturbance for justifying their 
capability in rejecting its effects upon the system response and the control effort. In addition, 
measurement noise figures are considered to represent those originated within a measuring device. 
Toward this justification, the system is modeled using the SIMULINK with MATLAB, to evaluate the 
system performance within environments close to the real. 
5.1 Disturbance rejection 
For evaluating the disturbance rejection property, different forms and levels are injected at the system 
output. Among these forms is the step disturbance to which the system response is shown in Fig. 5. 
From these figures, it is clear that the GH., controller (autopilot) rejects the disturbance corrupting the 
system output faster than the classical one and settles its response to zero value. The GH., controller 
rejects 50% of the disturbance within 1.3 [sec] while the classical one rejects 50% of the disturbance 
within 1.7 [sec]. In addition, the GH, controller rejects 95% of the disturbance within 3 [sec] while 
the classical one rejects 95% of the disturbance within 5 [sec], with somehow oscillatory profile. The 
peak undershoot in case of GHm  is smaller (-0.8) than that obtained with the classical controller (-1). 

Fig.5: Step disturbance response of (a) classical and (b) GH., design 

5.2 Measurement Noise Attenuation 
This criterion is validated through observing the system output and the control signal in response to the injected 
measurement noise. The system output responses to the white measurement noise are shown in Fig. 6. 
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These obtained results showed that the GH,0  attenuates the measurement noise more than the classical 

can do. In addition, the GH., has a filtering property as clear from the smoothing of the output 

response. 

5.3 Unmodeled Dynamics 
For autopilot design the system model at certain operating point is considered as the nominal one. 
Therefore, the system models at other operating points have dynamics that might not be exist in the 
nominal one which known as unmodelled dynamics. Consequently, the robustness of the autopilot 
designed with the nominal model is essential to guarantee its capability to overcome the effect of 
unmodeled dynamics. That is, the designed autopilot performs robustly with the system at other 
operating conditions. To justify this property, the designed autopilot (either classical or GH„, ) is 
implemented with different operating points models and trhe responses are observed in Fig. 10. It is 
clear that the GH„, autopilot is more robust than the classical one, especially at the operating 

conditions corresponding to flight times tf  = 2 [sec] and tf. = 60 [sec] . However, both approaches 

give nearly close responses in case of flight times tt. = 30 [sec] . Thus, it is necessary to revise this 

model and its assumptions in addition to looking forward for more robust GIL, autopilot upon more 
careful selection of the cost function weights. 
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The actuating signal, Fig. 8, shows oscillatory profile during the transient period in case of classical 
design in addition to larger values than those obtained with the GH. design. This 
problem/disadvantage reduces the life time of the missile and increases the required control effort. 

Conclusions 
This paper presented, briefly, different issues in robust control and summarized some of the controller 
design techniques including classical and advanced methods such as generalized H,, (GH. ). The 
weight selection in advanced controller design techniques in addition to the controller structure are 
clarified. The obtained results showed that the GH,, controller has a smaller overshoot, settles faster 
and has better stability margins than the classical controller. In addition, the GHm  autopilot rejects the 
disturbance corrupting the system output faster than the classical one and settles its response to zero 
value. These obtained results showed that the GHm  attenuates the measurement noise more than the 
classical can do. In addition, the GHm  has a filtering property as clear from the smoothing of the 
output response. That is, the GH., autopilot is more robust than the classical one with this system, 
especially at the operating conditions corresponding to flight times tt. = 2 [sec] and tf. = 60 [sec] . 
The actuating signal shows oscillatory profile during the transient period in case of classical design in 
addition to larger values than those obtained with the GH. design. This problem/disadvantage reduces 
the life time of the missile and increases the required control effort. However, both approaches give 
nearly close responses in case of flight times tf. = 30 [sec] . Thus, it is necessary to revise this model 
and its assumptions in addition to look forward for more robust GH. design upon more careful 
selection of the cost function weights. 
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