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Abstract: A new technique is derived to estimate the signal power spectrum density 
(PSD) and hence its autcorrelation lags. Several simulation results have been given 
to show the results accuracy. Based on the knowledge of the correlation lags, several 
approaches to fit the signal or random process to rational models as to approximate 
the spectrum to these models transfer functions square are considered. The model 
coefficients results are given and commented as well to be referred with other 
advanced approaches in the field. 
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I. Introduction: 
The power spectrum of signals and random process is very important to reveal 

the signal energy contents distributed over the frequency line. It is important to 
determine the signal identity (e.g. low pass signal etc.)) and/or characteristics as the 
correlation properties to design equipments in communications and digital signal 
processing field. In this paper, we introduce a new technique to estimate the signals 
spectrums. The usual technique based on the fourier analysis, called periodorgan [1], 
doesn't give correct spectrum but mostly smeared one. This suggested technique 
gives the signal spectrum irrespect to its statistical distribution. The second part of 
the paper is to describe the spectrum by rational model that fits its spectrum. 
Actually, the signal process can be described by rational model that is used in its 
generation from white noise process. Much of the information about the signal can be 
obtained through the model type, the coefficients as well as the zeros and poles of 
the model. The trend of the signal process or its extrapolation can be determined. A 
lot of these researches have been devoted to this problem of fitting the estimated 
spectrum by rational models in engineering econometrics, biometric, etc. [2]. Here, 
based on the technique of first part to estimate the spectrum or the correlations lags, 
different techniques are considered to find these models and its accuracy. 
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In the following section, the technique to find the signal spectrum is given and also 
simulation results to show the accuracy of the estimated spectrum. In section III, 
based an the estimated correlations, several methods for finding the appropriate 
rational model are given with the results. Finally, the main results and conclusion is 
drawn in section IV. 

II. Power Spectrum Estimation 
Despite the importance of the signal's spectrum in many fields, there is no yet a 
reliable technique to find it. Much of the efforts have been devoted to fit the signal or 
random process to autoregressive moving average model (ARMA) and using its 
transfer function as representing the process spectrum, [3], however the results are 
not satisfied. We provide a reliable technique to find the power spectrum of signals. 
It is based on remark for stationary random processes that the power spectrum 
density S(f) of a process -y(n) can be considered as [4]; 

Lim Ery2(n)1 = 2A S(f) 	 (1) 
a — .o 

as y(n) is the process existing through the very narrow high resolution rectangle 
window. 

A 
wo),{1  fo 

A 
 <Ifl<fo +-2 

0 	otherwise 

Thus, we established this very narrow rectangle window and passing the input 
process "x(n)" to obtain "y(n)" at each certain position fo, that is swept between zero 
and 0.5 (normalized frequency = frequency / sampling frequency), and the spectrum 
level at f = fo, is theoretically considered as: 

(3) 

and y(n)=x(n)*w(n) 	 (4) 

(* denoted convolution and w(n) is the window impulse response) 
"y(n)" is narrow band process and it is known as the bandwidth of the signal 
decreases, the time averages of the signal samples become closer to the statistical 
averages; so an anticipated good estimate is obtained as: 

S(f°) I  2AN 1Y2 (n)  

SP-1 2 
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(5) 
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This value is plotted against fo  and the process is continued for other frequency 
point. To establish the very narrow rectangle window with its required high 
resolution, we used the digital filter: 

11(1-Z;  Z-1)(1-Z; -1) 
1=1' 

e1(1-PiZ-1)(1-Pi. Z_1) 

Each corresponding pole and zero are chosen to lie on the same frequency (digital 
resonator). To achieve high resolution, the poles are chosen to lie at radius = 0.9999 
and the zeros at radius = 0.96. The main pole-zero pair to lie at frequency angle 2nfo 
and the two adjacent poles-zeros to lie at frequencies angle 
21c(fo  ±3 x10-6)rad/sec. The bandwidth of the window is found 17x10-6  HZ (i.e. A = 
17 x 10-6). As in (2), the filter transfer function is normalized to have maximum 
magnitude equal to one. Then, it is normalized once again to give equal amplitude to 
sinusoidal signal at its center frequency. However the spectrum level stays to need 
more accurate scaling to adjust its level to the true signal power level. In the coming 
results, both exact and estimated spectrums are normalized to 0 dB value at f = 0 to 
be able to held the comparison. The performance of this technique is shown through 
three examples 
Example 1: For rational model (ARM/r4,4)) 

x(n) + 1.72 x(n-2) + 0.81 x(n-4) 
=E (n) + 1.23 c(n-2) - 0.245 E(n-4) 	 (7) 

is driven by gaussian white noise "E(n)" to obtain x(n). The white noise is obtained 
as sum of 1000 independent runs of IMSL subroutine to generate such noise 
process. The spectrum of this input is flat. The spectrum of x(n) is shown in Fig. (1) 
as the estimated spectrum is compared with the exact spectrum of the above model 
to show the accuracy of the spectrum estimation. The plot is for 100 points. 
Example 2: Minimum phase ARMA (4,3), model 

x(n) - 2.202 x(n-1) + 2.628 x(n-2) - 1.835 x(n-3) + 0.731 x(n-4) 
= c(n) + 1.5 c(n-1) + 1.05 c(n-2) + 0.392 E(n-3) 	(8) 

The zeros of the model as well as the poles lie inside unit circle. The resultant 
spectrum estimate is in Fig.(2). 
Example 3: Moving average model; MA (3) 

x(n) = E(n) + 1.5 e(n-1) + 1.05 E(n-2) + 0.392 E(n-3) 	(9) 
The results are in Fig. (3). These simulated examples prove the advance and 
reliability of this spectrum estimator to yield good faithful estimate of the underlying 
process spectrum. The power spectrum density is known to be given by: 

H(z)- (6) 
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S(6.))= r(0)+ 2 E r(m) cos me.) 
m=1 

as r(m) is the mu' lag correlation H4=11-4 
Thus, the autocorrelation lags can be obtained as 

(10) 

1 R r(m) = —
27c 

f SHcos mo) do) 

This estimation procedure of random signal process correlation properties can have 
several implications and advantages in signal processing applications [5]. The 
following section shows the use of these correlation lags to fit the signal process to 
rational model. 

III. Rational Modeling 
Two approaches are basically derived; the first is based on the ergodicity property 
(as assumption of, the statistical correlations equal to the time correlations average) 
to derive a set of linear equations to find the coefficients of the model. The second 
approach considered is based on fitting the rational model to the estimated power 
spectrum. We show both approaches and their results. 

1- Autogressive (AR) part of ARMA model 
The generated random process by this model is given by: 

x(n)+ ak  x(n -10= Ebk  G 	 (12) 
k=1 	k=0 

as (p,q) is the model order and c(n) is the driving white noise. 
The spectrum is represented as 

2 
E bk  e-i°)/( 

k=0  

1+ Eak  Cimk 

If equation (12) is multiplied by x(n-m) and the statistical average operator is 
performed, we get the set of equations: 

r(m)+ E ak 	-10 =0 	 as m .?:q+1 	 (14) 
k-1 

r(m) = E [x(n) x(n-m)] 
E A statistical average 

These overdetermined equations can be represented in matrix form as 
RA = 0 	 (15) 

(13) 
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where 

and 

AT  = [1 	at a2 	 ap] 
r(q+ 	r(q) • • • r(q +1-p) 

R. 

	

r(q+t) 	--• r(q+t-p)  

This technique is first given in [2]. To solve this set of eqs., the problem is 
considered as (minimization problem): 

	

min ATRTRA 	 (16) 
Two ways can be throught to find the optimal vector A. The first way to find A as the 
minimum eigenvalue vector of the matrix RTR, then the elements of the vector are 
scaled to give one to the first element. The second way to consider the constraint 
that the first element of A is restricted to one, so the problem in (16) is actually: 

A  TRTRA =7:rk-r- HA+2bT A+C 	 (17) 
where 

AT 	a2  
and C = first element (1,1) of RTR 

bT  = the rest of first line of RTR 
H = the corner matrix after cancelling the first column and row of RTR This 

way gives the solution: 
AT =_H—lb 	 (18) 

The second approach based on fitting the model to the estimated spectrum gives the 
equations: (based on eq. (13)) 

p p 0—e) 	. 	 0—() 

	

Eak  a e  S(0))e 	bk  Di  e 	 (19) 
k=0 P=0 	 k=0 e=0 

1 
Or 	 ak at —

271 sHexm-k+e).  
k=0 f=0 

(ao = 1) 
or for mul lag, we get 	ATRmA = 0 	 (21) 

	

r(m) r(m   r(m - 
as Rm  

r(m +p)   r(m) 

Considering all the correlation lags possible form (positive and negative), we get the 
problem formulation: 

 

(Rm  +RrTn)} A 	 (22) 
m=q+1 

min AT  
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Similar to the problem in (16), we have two ways to solve the problem in (21) as the 
minimum eigenvalue problem solver or quadratic problem as in (17). Therefore, we 
have the total of four methods to find A, the corresponding results for specific 
example is next considered. 

Example: the following minimum phase ARMA (4,3) model is used to obtain random 
process that is driven by gaussian white process 

"(z)=  1- 2.202Z-1  +2.628Z-2  -1.835Z-3  +0.731Z-4  
1+1.5Z-1  +1.05Z-2  +0.392Z-3 	 (23) 

The spectrum estimation of this process is shown in Fig. (2). For the overdetermined 
system equation, up to 22 equations are considered in the 4th method to find A. The 
obtained results are in table I: 

Table I 
Method al  = -2.202 a2 = 2.628 a3  = -1.835 a4  = 0.731 

I -2.584 3.122 -1.946 0.586 
II -2.248 2.397 -1.360 0.419 
Ill -2.487 3.303 -2.477 0.994 
IV -2.316 2.847 -2.039 0.846 

It is clear the best results are obtained with last method (IV). The same examples are 
repeated for t=42, i.e. more overdetermined equations. However, the results 
accuracy compared with Table I. were less. We understand that adding more 
information can lead to better results to this sensitive problem, but it seems the 
spectrum estimate accuracy or its associated error limits the problem exact solution 
with these different assumptions based techniques. 
2- AR-model: 
For this particular model, the signal random process is generated according to: 

P 
x(n)+ 	x(ri - k)-•=b0  c(n) 

k=1 
and the spectrum is given by: 

1b0 1 2  

The known Yule-Walker method to estimate AR-parameters is based on the existing 
of ergodic process that is known as solving the equations set: 

RA=16012  C 	 (26) 

6 

S(w)= 2 
1+ Eak  e-J"k 

k=1 

(24)  

(25)  
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where AT  = 
CT =[1 

and 	R. 

[1 

r(0) 
r(1) 

r(p) 	 

al  	ap] 
0  	0] 

r(1) 	 
r(0) 

	

 	r(0) 

r(-p) 

The second approach based on sitting the spectrum by the model gives similar 
problem to (22) as: 

min AT 	(Rm  +RTm)1A 
m=1 

that is solved similar to method IV. 
Example: the following AR(4)-model is considered 

1  
El(z)rs  1-2.202Z-1  +2.628Z-2  -1.835Z-3  +0.731Z-4  

the estimated coefficients are shown in table II 

Table II 
Method al  = -2.202 a2  = 2.628 a3  = -1.835 a4  = 0.731 

I -2.182 2.568 -1.768 0.688 
II -2.662 2.692 -1.609 0.184 

The results obtained with Yule-Walker method is more accurate. 

3- Moving - average (MA) model: 
The underlying model process is given by: 

x(n)= E bk  E(n-k)  
k=0 

(29)  

where E(n) is the driving input gaussian while process (unit variance). 
The statistical average correlations are given by: 

E bk  bk_n 	- q 
k-O 

rx(n) 

The spectrum 

otherwise 

is given by- 

(30)  

2 
S(10)= f  bk  e-Pk 

k=0 
(31)  

(27)  

(28)  
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Example: The following MA (3)-model is used 
x(n),  e (n) +1.5 c (n) +1.05 E(n- 2) + 0.392 e (ri -- 3) 	 (32) 

The process spectrum is shown in Fig. (3). The autocorrelation lags for this spectrum 
are calculated. We found the correlation lags for n > q, are not vanished as expected 
to the statistical correlations as in (30). The value of r(q+m) is comparable by r(q) for 
certain small m. However, we tried to use the estimated correlation results with the 
statistical average assumption to obtain the model coefficients as: 

min /n
0 (f(n)-r(n))2} 

-  

as 	 bk  bk _ n 	 (q  = 3) 
k =0 

The approach based on fitting the estimated spectrum by the model theoretical 
spectrum is also considered as the problem solution of; 

min 	(s(oi)-§(10)
2 

i=1 

where S(0)) as in (31) and §((.0 ;  ) is the spectrum in Fig. (3). (N = 100). The results of 
the two problems in (33) & (34) respectively are: 

Table III 
Method al  = -2.202 a2  = 2.628 a3  = -1.835 

1.16 0.756 0.392 
II 1.391 0.895 0.504 

The results of the second method are more accurate. It is our belief that the fitting 
spectrum by the rational model spectrum should be more accurate results, despite 
its need to large number of points to represent the spectrum. The spectrum estimator 
can provide as much as 30,000 points, however the computer load is largely 
demanded. In all the results, adding noise to the random process means distorting 
the spectrum estimate and less accurate coefficients estimation. The rational 
modeling of random process is still active area in research to introduce more 
advanced fitting techniques that are striving for increased accuracy [3], [6], [7]. 

IV. Conclusion: 
A new technique to estimate the power spectrum density of random signals is 

given and its results are shown. Hence, the signal correlation lags properties can be 
obtained, a crucial step for signal processing applications. Then, the modeling of the 

(33)  

(34)  
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signal process by rational model driven by white noise is considered. The results for 
the different rational models are presented for two approaches to find its accuracy 
and the justifications of the different assumptions that are based on. The direct 
spectrum estimate modeling is more realistic than the approach based on the 
ergodicity random process property assumption. To improve the models coefficients 
accuracy for the given spectrum estimator accuracy, we are still looking for more 
advanced techniques as well as in the research medium. 
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Fig. (1): Spectrum vs. normalized frequency 
-----" estimated and " 	" exact 
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Fig. (2): Spectrum vs. normalized frequency 
	" estimated and " 	" exact 

Fig. (3): Spectrum vs. normalized frequency 
	" estimated and " 	" exact 
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