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ABSTRACT 

This paper is concerned with the baud duration estimation of M-ary PSK 
signals with M=2, and 4. The baud duration is one of the important parameters to 
intercept, and recognize digitally modulated signals as well as to determine the 
optimum jamming for them. The proposed method for baud duration estimation is 
based on the computation of the spectral correlation function of a signal. The 
proposed method for baud duration estimation provides reliable and accurate results 
at weak SNR. It is found that, a good estimation for baud duration of M-ary PSK 
signals at the SNR of —5 dB is available. Also, in this paper a new method for fast 
computation of the spectral correlation function is provided. 
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I- INTRODUCTION 

Interception of communication signals is attempted for a variety of reasons 
including reconnaissance, surveillance, position fixing, identification, and 
communications jamming. For example, an aircraft might attempt to intercept the 
communications between a submarine or ship and a satellite, or a satellite might 
attempt to intercept ground-to-ground communications. Typically, the interceptor has 
knowledge of no more than the communicator frequency band and modulation 
format. In the past, most appropriate approaches for signal interception were based 
on radiometry[1]. However, it is commonly recognized that such radiometric methods 
can be highly susceptible to unknown and changing noise levels and interference 
activity. There have been many proposals for counteracting such complications, 
including various approaches to adjust or adapt threshold levels, adaptive filtering, 
and directional nulling of interfering signals. But these problems remain as the most 
serious impediment to signal interception tasks[1]. 

The radiometric approach for interception is based on the use of stationary 
random processes as models for signals to be intercepted. However, it is found that, 
for the purposes of signal interception, the signal of interest is more appropriately 
modeled as a cyclostationary random process. That is, a random process whose 
probabilistic or statistical parameters vary periodically with time[2]. The message 
contained in the modulated signal is unknown, and is usually modeled as a 
stationary random process. This stationarity coupled with the periodicity of sine wave 
carrier, pulse trains, repeating spreading codes,...etc., results in a cyclostationary 
model for the modulated signal. These cyclostationary signals typically do not exhibit 
spectral lines because the spectral lines of the unmodulated carrier and/or pulse 
trains are spread out over relatively broad bands by the stationary random 
modulation. 

Before proceeding to the technical part of this paper, let us consider the 
signal interception problem and the weaknesses and strengths of radiometry and 
cyclic-feature detection in a little more detail. There is a clear trend towards 
increased use of systems employing sophisticated signal formats such as direct-
sequence and frequency-hopped spread spectrum modulation. These techniques 
are to aid communication in this environment and to protect the communication 
system against interception. In these applications, it is unlikely that conventional 
interceptor will be able to perform required signal interception or subsequent analysis 
tasks. In addition, the modulation format of the signal of interest can make it 
indistinguishable from the background noise. The presence of several identically 
distributed spectrally superimposed signals will confuse most energy interception 
schemes, preventing the interceptor from determining any more than knowledge that 
signals are present in the environment. In particular, energy detection schemes 
are inherently unable to measure or exploit timing or phasing properties (carrier 
frequency, chip, or baud timing) of the signals of interest or interferences because 
these energy detectors usually cannot exploit the cyclostationary, of the signal 
characteristics. 

There are some important advantages of cyclic spectral analysis over 
energy detection techniques[1]. One of them is its discriminatory capability. Signal 
features are discretely distributed in cyclic spectrum, even if the signal has 
continuous distribution in the power spectrum. Thus, signals with overlapping 
feature in the power spectrum can have non-overlapping features in the cyclic 
spectrum. Background noise, for instance, has no features at nonzero cyclic 
frequencies; i.e. analyzing the cyclic spectrum at a nonzero cyclic frequency where a 
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signal-of-interest is expected to appear without any component due to the 
background noise. Another advantage of cyclic spectral analysis is that the cyclic 
spectrum is a richer domain for signal analysis than the conventional power 
spectrum. In addition to the signal separation provided by the cyclic spectrum 
magnitude, sine-wave carrier, pulse-train frequency, and phase parameters can also 
be measured from the cyclic spectrum magnitude and phase. 

In section II, theoretical background and basic terminologies for spectral 
correlation function are presented. In section III, baud duration estimation algorithms 
are discussed and are provided in a new technique using spectral correlation 
function. In section IV, computer simulations for measuring spectral correlation 
function for BPSK and QPSK signals are given. Also, the performance evaluations 
for baud duration 	estimation are provided. Finally, the paper is concluded in 
section V. 

II- THEORETICAL BACKGROUND AND BASIC TERMINOLOGIES 

For the purposes of signal interception, the signal of interest is most 
appropriately modeled as a cyclostationary random process, whose probabilistic or 
statistical parameters vary periodically 	with time, reflecting the characteristic 
property of regenerative periodicity. If there is more than one source of periodicity 
and the periods are not all commensurable, then the process is called almost 
cyclostationary since its parameters are almost periodic functions of time. 

A zero-mean process x(t) is said to be cyclostationary in wide sense if its 
autocorrelation is a periodic function of time, i.e. 

Rx(t+r/2,t—r/2)= Mt+To+T12,t+Ti—T12), (1) 

for some period To  # o where 

Rx(t + / 2,t — T 2)= Etx(t + I 2)x*  (t — / 2)}, 	 (2) 

and E{.} denotes the mathematical expectation operation. Since Rx  is periodic, it 

admits a Fourier series representation, 
Rx  (1+ r /2,1—r /2)=IR'(r)el2null 

a 

where the sum over a 	includes all multiples of the reciprocal of the 
fundamental period To (such as carrier frequency, baud rate, chip rate, hop rate, 
and their sums and differences). The Fourier coefficients R x°' (t) , which depend on 
the lag parameter T, are given by 

I £12 
R,`,` (r) = lirn — 	R x  (t + / 2, t — T 2)e -'2'w  dt 	 (4) 

z/2 

If there is only one period, say T, then Z can be chosen equal to T, and the limit in (4) 
can be omitted. If x(t) is a cycloergodic process[2,7], which will be the case if an 
appropriate model is used, then after substitution of (2) into (4), the expectation 
operator can be omitted to obtain 

112 	 '2"` 	 (5) Axa  (T) = 	x(t 	2)x(t — 2)edt. 
z_40. z  z/2 

When (5) is used in place of (4), the limit Z—>00 cannot be omitted if there is only one 
source of periodicity. We shall focus our analysis on the class of time-series for 
which the function iicx' exists and non identically zero for some non zero values of a . 
Also, in order to avoid anomalous time-series, it is assumed that it" (T)is a 
continuous function of r. For a = 0, ii„cl is the conventional limit autocorrelation, 

(3) 
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denoted by rt', , which plays a fundamental role in the theory of conventional spectral 

analysis[2,4]. For a # 0, k` is a generalization of the limit autocorrelation that 
incorporates a cyclic (sinusoidal) weighting function, and 	shall therefore be 
referred to the limit cyclic autocorrelation or sometimes abbreviated to cyclic 
autocorrelation. Whereas k' (t) , for fixed 2-, is the constant (dc) component of the 

time-series 

Z(t)=
A  

X(t 	2)x(t - /2). 	 (6) 
k(T) is the sine-wave (ac) component, with frequency a , of the time-series z(t). The 

set {a: R NT) o} is refered to the set of cyclic frequencies. By analogy with the 

terminology for conventional autocorrelation (a = 0 in (5)), the Fourier transform of 
the cyclic autocorrelation, 	(f), is given by, 

A 
• (f)= 	• (T)e-121cfr ch, 

—At/2 

where X imf  (t, f) is the complex envelope of the narrow-band spectral component 
with center frequency f and bandwidth of order Af ;i.e. 

t+1/2Af 

Xvv- (t, f)= 	x(u)e-' 2'fr du. 	 (9) 
t-112Af 

By noting that z = At and T =1 / Af , then ,"(f) is also called the spectral correlation 

function. Equation (8) represents the limit, as spectral resolution becomes 
infinitesimal (Af --> 0) , and the limit (At —> co) temporal correlation of the two spectral 
components at frequencies f + a /2 and f -a/2. Since the frequencies of the 
correlated spectral components are f + a / 2 and f - a / 2 , the cycle frequency a is 
also called the frequency separation. 

Now we provide several alternatives but equivalent definitions of the 
spectral correlation function. In addition to the two definitions (7) and (8), it can be 
shown that ,C"(f) is given by the following limit of spectrally smoothed products of 
the spectral components of x(r). 

I 	

At 

J.  +Af/2 
( f ) = 

urn 
 lim

t—>oo 
= 5 2- XAt  f + a 2). XI (t, f - a / 2)dt, 	 (10) 

At .0 A Af  

where ArA, (t , f) is defined by (9) if 1 / Af is replaced by At It can be shown that (5) is 
expressed by 

1?:`(t). lim At 	2 
r ua(t + / 2)va.  (r - T/2)clt. 	 (11) 

At.. 	At /  

where 
(t) = x(t)e-  ,and e(r). x(t)e'°` 	 (12) 

Thus, Rx' (s) is the cross-correlation between u° (t) and e(t), and s°(f) is the 
Fourier transform of (11) as defined by (7). For convenience of the sequel, the 
integrand in definitions (8) and (10) is denoted by 

(7 ) 

and it is called the cyclic spectral density function. For a = 0 it reduces to the 
conventional power spectral density function. Specifically, it is shown in [2]-[5] that 

At/2 

• (f ) = lien urn — 54fX,,Af  (t, f + / 2). XL./  (t , f -a 12)dt 	 (8) 
Af -40 41—■‘0  At 
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XT (t,f + a 12)x;,(t , f -a / 2), 	 (13) 

and is called the cyclic petiodogram. The symbol T is used as a dummy parameter, 
which may be either T 1 /Af as in (8) or T = At as in (10). 

From the previous discussion we can conclude a new method to compute 
the spectral correlation function. First, two new signals from the original signal x(t) 
are formed such as 

.x; (t) = x(t)e r"` , and xz (t) = x(t)e'd 	 (14) 

Instead of computing the cross-correlation between 4(0 and 4(0 to find S,',`(f), 

the Fourier transform is applied to x; (t) and 4(0 directly as 
Xr(f) = F .T 114' WI, and /1';`(f ). F.T.14 	 (15) 

and then the spectral correlation function S'. (f) is computed as 

(f ) = 	(f)X, (.f )• 	 (16) 
Computer simulations shows that computing the spectral correlation function using 
the Fourier transform method, defined by equations (14)-(16), is faster than the direct 
time domain method. 

III- BAUD DURATION ESTIMATION 

The spectral correlation concept has associated fundamental properties 

that are of significant practical value: 1) different types of modulated signals (such as 

BPSK, and QPSK) that have identical power spectral density functions can have 

highly distinct spectral correlation functions, 2) stationary noise and interference 

exhibit no spectral correlation (the spectral correlation function is identically zero), 3) 

the spectral correlation function contains phase and frequency information related to 

timing parameters in the modulated signals, and 4) the existence of spectral 

correlation function in a signal means that some spectral components can be 

estimated using other spectral components of the signal. These properties can be 

exploited for detection, classification, parameter estimation, and extraction of signals 

buried noise and interference. Although the spectral correlation function is a second-

order (quadratic) statistic like the power spectral density function, their properties 

enable us to accomplish tasks that are impossible to accomplish by the power 

spectral density function[3]. This includes synchronization[8], noise and interference 

rejection for signal extraction and detection[3]. 

As an example, the spectral correlation function of BPSK signal is given as 
below. M-ary PSK signals can be modeled by 

s(t). E q(t - 	- t 0 ) cos(2nfo t +0„ +4) 	 (17) 
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where Tb is the chip interval, (0„), is an independent sequence of equiprobable 

values. In BPSK {13„ = 0 and Tc} and for QPSK 10„ = 0, n/2, it, and 3n/21. In this 

case the spectral correlation function of BPSK is given by [2,3] 

Q(f + a / 2 
:4:  f0)Q.  (f - a / 2 + fo )e r[2x(aT2Mto ±20o 1 , a -+2f0 + —

k 

4T 	 T„ 

= 
4T, +Q(f +a/2- fo )Of -a/ 2-fo ) 
1 {Q(f +a12+ fo)Of -a12+  fo) }e -,2.010  01  

Tb  

for all integers k, where Q(f) is the Fourier transform of the pulse train, q(t), and it 
is given by 

sin(nfT„) 
Q(f)= of  

Also, QPSK signal has spectral correlation function equal to that of the BPSK signal 
for a =k/Tb  but not exists for a =±2f, +kIT,. 
It is well known that the BPSK and QPSK signals have identical power spectral 
densities[10]. On the other hand, their spectral correlation functions are different as 
shown in Fig. 1; specially at a # 0. Thus, the spectral correlation function can be 
used to discriminate between BPSK and QPSK signals. 

The baud duration estimation is very important for automatic signal 
classification as well as for signal recovery and information extraction. Generally, any 
baud duration estimation method used for a particular application depends both on 
the amount of the prior information available about possible baud durations and the 
constraints on processing time and estimation accuracy. Based on the amount of the 
prior information available, there are three possible situations. These are: 1) systems 
with no prior information, 2)systems with a defined range of parameters values, and 
3) systems with a defined list of parameters values. 
Baud duration estimation was studied in details in [11]-[13] and there were many 
methods to estimate the baud duration. It is worth noting that these methods depend 
on extracting the symbol sequence. Therefore, these methods are affected, deeply, 
by the noise. Results in [11]-(13] show that these methods are good at high SNR 
values, whereas, these methods fall when the SNR is less than 10 dB. 

In this paper, a new method for baud duration estimation is provided. This 
method depends on computing the spectral correlation function of an intercepted 
signal. By observing the spectral correlation function at a = k IT, for all integers k , 
where Tb  is the baud duration of the symbol sequence for any one of considered 
signals, the baud duration can be estimated as the distance between the features at 
a =0 and a= k IT,. As a corollary, the baud duration can be estimated by estimating 
the spectral correlation function of the intercepted signal. 

IV- COMPUTER SIMULATIONS AND 
PERFORMANCE EVALUATIONS 

Two cyclostationary signals are simulated. These signals are a binary-
phase-shift-keyed (BPSK) carrier, with a binary phase-modulating (data) sequence, 
and a quaternary-phase-shift-keyed (QPSK) carrier with a quaternary phase-
modulating sequence. For these two signals, the frame length is of 32768 samples, 

s,`.`(f) (18)  

(19)  
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the carrier frequency, f = 2f,, , and the sampling rate, f, = 4f, , where fn  is the bit 

rate. The computation of the spectral correlation function is performed by any of the 
two methods discussed in section II. First case depends on equations (5) and (7). 
The second case is by using the method described by equations (14)-(16). These 
simulations are used to find the spectral correlation functions of BPSK and QPSK 
signals. It is found that, computation of spectral correlation function using the second 
method is faster than the case of using equations (5) and (7). Fig.2 shows the 
spectral correlation functions of simulated one frame of both BPSK and QPSK 
signals. These functions are graphed as the height of a surface above the bi-
frequency (f,a) plane. To illustrate the peak locations on the bi-frequency (f,a) 

plane, contours are plotted as in the Fig.3. As shown from Figs.2 and 3, these 
signals have the same power spectral densities, whereas they have highly distinct 
spectral correlation function at a # 0 . This corollary is very useful for signal 
classification, that is, it is possible to distinguish among signals even if they have the 
same power spectral densities. Depending on the analysis of the properties of 
spectral correlation function, the distance between the first two peaks (at a= 0 and 
the second peak) is measured. This distance will be the symbol rate and 
consequently the baud duration is its reciprocal. 
Baud duration estimation was tested for BPSK and QPSK signals corrupted with 
additive white Gaussian noise (WGN). This estimation task is done at different 
signal-to-noise ratio (SNR) values as shown in the table (1). As known white 
Gaussian noise has no features in the spectral correlation function at a 0[1]. Thus, 
the effect of white Gaussian noise on a cyclostationary signal at a 0 will vanishes 
and the signal features will appear obviously. Thus, we will note that the baud 
duration estimation is validated successfully at low SNR. Table (1) presents the 
probability of correct estimation of baud duration of BPSK and QPSK signals. It is 
clear that, at SNR=-5 dB and estimation error ± 2% , the success rate is 100% for 
BPSK signal, while it is 90% for QPSK signal. These results are derived from 10 
frames for each modulation type of interest. 
Comparing the developed method with those presented in [11]-[13], we find the 
following points. 
1) The developed method, based on the spectral correlation function, deals with RF 

signal itself not with the extracted symbol sequence as in [11]-[13]. 
2) The methods in [11]-[13] assume there is a prior knowledge about the range of 

values for baud duration. On the other hand, the developed method deals with no 
prior information systems. 

3) The developed method provides reliable and accurate results at weak SNR. It is 
found that, good estimation for baud duration of M-ary PSK signals at the SNR of 
—5 dB is available. On the other hand, the methods in [11]-[13] fall when the SNR 
is less than 10 dB. 

V- CONCLUSIONS 

This paper is concerned with the baud duration estimation of M-ary PSK 
signals with M=2, and 4. A new method for baud duration estimation is provided. 
This new method is based on the computation of the spectral correlation function of 
a signal. Also, in this paper a new method for fast computation of the spectral 
correlation function is provided. Comparing the developed method for baud duration 
estimation with those presented in 1111-[13], we find that the developed method, 

732 



SP-7 I 8 
Proceedings of the rd  ICEENG Conference, 23-25 Nov. 1999 

based on the spectral correlation function, deals with RF signal itself not with the 
extracted symbol sequence as in [11]-[13]. Methods in [11]413] assume there is a 
prior knowledge about the range of values for baud duration. On the other hand, the 
developed method deals with no prior information systems. The developed method 
provides reliable and accurate results at weak SNR. It is found that, good estimation 
for baud duration of M-ary PSK signals at the SNR of —5 dB is available. On the 
other hand, the methods in [11]-[13] fail when the SNR is less than 10 dB. 

The current trend is the using of the spectral correlation function in the signal 
detection task. 
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Fig. 1. Theoretical spectral correlation function magnitude 
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Table(1): Percentage of successful baud duration estimation of M-ary 
K 	1 b don 10 realizations and 2% estimation error. 
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PS signs s ase 
SNR 
(dB)  

BPSK 
(±2%) 

QPSK 
(±2%) 

5  100 100 
0  100 90 
-5  100 90 
-7 100 90 

(a) 	 (b) 
Fig. 2. Estimated spectral correlation function magnitude 

for: (a) BPSK signal, and (b) QPSK signal. 

2 	3 	4 	5 
cyclic fraci./fb 

(a) 	 (b) 
Fig. 3. Contours of estimated spectral correlation function 

magnitude for: (a) BPSK signal, (b) QPSK signal. 
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